MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY

SYLLABUS

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

REVISED ON DECEMBER 2020

DEPARTMENT OF MECHANICAL ENGINEERING (ME) MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY(MIST) MIRPUR CANTONMENT, DHAKA- 1216, BANGLADESH

RESTRCITED

CERTIFICATE

Certified that this syllabus of Bachelor of Science in Mechanical Engineering of Military Institute of Science and Technology (MIST) is prepared by the following committee members and will be implemented from Level-1 (ME-19) of academic session 2020-21.

A. <u>President</u>

Brig Gen Md Humayun Kabir Bhuiyan, psc Head, Department of Mechanical Engineering Military Institute of Science and Technology (MIST)

- B. Internal Members
 - 1. Air Cdre Md. Abdus Salam, BPP, psc Dean, Faculty of Mechanical Engineering Military Institute of Science and Technology (MIST)
 - 2. Brig Gen A K M Nazrul Islam, PhD Dean, Faculty of Electrical and Computer Engineering Military Institute of Science and Technology (MIST)

3. Professor Dr. Md. Quamrul Islam Department of Mechanical Engineering Military Institute of Science and Technology (MIST) Professor Dr. A. K. M. Nurul Amin Department of Industrial and Production Engineering Military Institute of Science and Technology (MIST)

5. Gp Capt A K M Zahidur Rahman, psc Senior Instructor, Department of Mechanical Engineering MilitaryInstitute of Science and Technology (MIST)

Col Md. Awal Khan, EME Senior Instructor, Department of Industrial and Production Engineering Military Institute of Science and Technology (MIST)

Col Mohammad Mobarak Hossain Majumder, psc Senior Instructor, Department of Mechanical Engineering Military Institute of Science and Technology (MIST)

8.

7.

4.

6.

Lt Col Brajalal Sinha, PhD, AEC Instructor Class- A, Department of Science & Humanities Military Institute of Science and Technology (MIST)

9.

Lt Col Muhammad Nazrul Islam, PhD Instructor Class- A, Department Of Computer Science & Engineering Military Institute of Science and Technology (MIST)

- 10. Lt Col Palash Kumar Sarker, PhD, Sigs Instructor Class- A, Department of Science & Humanities Military Institute of Science and Technology (MIST)
- 11. Major Tahmina Sultana, PhD, Engrs Instructor Class- B, Department of Science & Humanities Military Institute of Science and Technology (MIST)

12. Major Md. Manwarul Haq, PhD, AEC Instructor Class- B, Department of Science & Humanities Military Institute of Science and Technology (MIST)

13. Asst Professor Dr. Md. Golam Mostofa Department of Mechanical Engineering Military Institute of Science and Technology (MIST)

14.

Asst Professor Dr. Muammer Din Arif Department of Industrial and Production Engineering Military Institute of Science and Technology (MIST)

15.

Asst Professor Tariq Mahbub (Member Secretary) Department of Mechanical Engineering Military Institute of Science and Technology (MIST)

> iii RESTRCITED

RESTRCITED

C. BUP Members

1. Brig Gen Md Anwar Shafique, ndc, psc College Inspector Bangladesh University of Professionals (BUP)

2. Brig Gen Md Zahidur Rahim, ndc, afwc, psc Dean Faculty of Science Technology Bangladesh University of Professionals (BUP)

D. External Members

1.

3.

Professor Dr. Maglub Al Nur Department of Mechanical Engineering Bangladesh University of Engineering and Technology (BUET)

2. Professor Dr. Mohammad Ali Department of Mechanical Engineering Bangladesh University of Engineering and Technology (BUET)

Professor Dr. Md. Afsar Ali Department of Mechanical Engineering Bangladesh University of Engineering and Technology (BUET) Brig Gen Shamim Ahmed, psc Director, EME Bangladesh Army

5.

4.

Dr. Syed Md. Ihsanul Karim Director Bangladesh Industrial Technical Assistance Center (BITAC)

RESTRCITED

TABLE OF CONTENTS

CHAPTER 1

GENERAL INFORMATION

1.1	Introduction to MIST	1
1.2	Vision and Mission of MIST.	1
1.3	Motto and Values of MIST.	1
1.4	Eligibility of Students for Admission in MIST.	2
1.5	Number of Seats	3
1.6	Admission Procedure	3
1.7	Students Withdrawal Policy	4

CHAPTER 2

RULES AND REGULATIONS FOR UNDERGRADUATE PROGRAMME AT MIST

2.1	Introduction	6
2.2	The Course System	6
2.3	Number of Terms in a Year	6
2.4	Duration of Terms	6
2.5	Course Pattern and Credit Structure	6
2.6	Course Designation System	7
2.7	Assignment of Credits	7
2.8	Types of Courses	8
2.9	Course Offering and Instruction	8
2.10	Course Instructor-Student Interaction	8
2.11	Student Adviser	9
2.12	Course Registration	9
2.13	Limits on the Credit Hours to be taken	9
2.14	Course Add/Drop	10
2.15	Withdrawal from a Term	10
2.16	The Grading System	11
2.17	Distribution of Marks	11
2.18	Collegiate and Non-Collegiate	12
2.19	Calculation of GPA	13
2.20	Impacts of Grade Earned	13
2.21	Classification of Students	14
2.22	Definition of Graduating Student	15
2.23	Performance Evaluation	15
2.24	Minimum Earned Credit and GPA Requirement for Obtaining Degree	16
2.25	Application for Graduation and Award of Degree	16
2.26	Time Limits for Conclusion of Bachelor degree	16
2.27	Attendance, Conduct and Discipline	16
2.28	Teacher-Students Interaction	17
2.29	Absence during a Term	17
2.30	Recognition of Performance	17
2.31	Rules of Different Examinations	17
2.32	Irregular Graduation	18
	-	

vi RESTRCITED

CHAPTER 3

DEPARTMENT OF MECHANICAL ENGINEERING (ME)

3.1	Introduction to the program	21
3.2	Vision and Mission of the Program	21
3.3	Program Outcomes	21
3.4	Generic Skills	22
3.5	Curriculum/ Skill Mapping	23

CHAPTER 4

COURSE CURRICULUM OF BACHELOR IN MECHANICAL ENGINEERING

4.1 4.2 4.3 4.4	Course Schedule Contact Hours and Credit Hours Distribution in Eight Terms Term wise Distribution of Courses List of Elective Courses	24 24 25 27
CHA	APTER 5	
COU	JRSE CONTENTS	
5.1	Courses Offered by Mechanical discipline	29
CHA	APTER 6	
DEI DEP	AIL OUTLINE OF UNDERGRADUATE COURSES OFFERED BY OTHER ARTMENTS TO ME STUDENTS	421
CHA	APTER 7	
DEI DEP	CAIL OUTLINE OF UNDERGRADUATE COURSES TAUGHT TO OTHER CARTMENTS	528
App	pendix	598

CHAPTER 1

GENERAL INFORMATION

1.1. <u>Introduction to MIST</u>

The necessity of establishing a technical institute for the Bangladesh Armed Forces was felt in the late eighties. In the absence of such an institution, officers of Bangladesh Armed Forces had been graduating from Bangladesh University of Engineering and Technology (BUET), Bangladesh Institute of Technology (BIT) and other foreign institutions of science and technology. With a view to meet the increasing demand for the development and dissemination of engineering and technological knowledge, Bangladesh Armed Forces established the Military Institute of Science and Technology (MIST) that promises to provide facilities for higher technical education both for the officers of Bangladesh Armed Forces as well as for civil students from home and abroad. The motto of MIST is -Technology for Advancement. Founded on 19 April 1998, MIST started its journey on 31 January 1999 by offering a four-year bachelor's degree on Civil Engineering. Bachelor's degree on Computer Science Engineering course started on 2001. Bachelor courses on Electrical, Electronic & Communication Engineering and Mechanical Engineering started its journey from 2003. Bachelor of Science program on Aeronautical Engineering (AE) and Naval Architecture and Marine Engineering (NAME) program were started from 2008-2009 and 2012-2013 respectively. Besides, four new departments started their academic session from 2014-2015 i.e. Nuclear Science & Engineering (NSE), Biomedical Engineering (BME), Architecture (Arch) and Environmental, Water Resources & Coastal Engineering (EWCE).

1.2 <u>Vision and Mission of MIST</u>

Vision: To be a centre of excellence for providing quality education in the field of science, engineering and technology and conduct research to meet the national and global challenges.

Mission: MIST is working on following missions:

a. Provide comprehensive education and conduct research in diverse disciplines of science, engineering, technology and engineering management.

b. Produce technologically advanced intellectual leaders and professionals with high moral and ethical values to meet the socio- economic development of Bangladesh and global needs.

c. Conduct collaborative research activities with national and international communities for continuous interaction with academia and industry.

d. Provide consultancy, advisory, testing and other related services to government, nongovernment and autonomous organization including personal for widening practical knowledge and to contribute in sustainable development of the society.

1.3 <u>Motto and Values of MIST</u>

Motto: As an Institution without gender biasness, MIST is steadily upholding its motto "Technology for Advancement" and remains committed to contributing to the wider spectrum of national educational arena, play a significant role in the development of human resources and gradually pursuing its goal to grow into a '**Centre of Excellence**'.

Values:

a. Integrity and Respect-We embrace honesty, inclusivity, and equity in all that we do.

b. Honesty and Accountability-Our actions reflect our values, and we are accountable for both.

c. Dedication to Quality and Intellectual Rigor-We strive for excellence with energy, commitment and passion.

d. Pursuit of Innovation-We cultivate creativity, adaptability and flexibility in our students, faculty and staff.

1.4 Eligibility of Students for Admission in MIST

The students must fulfill the following requirements:

a. **Bangladeshi Students.** Minimum qualifications to take part in the admission test are as follows:

(1) The applicant must have passed SSC/equivalent examination in Science Group obtaining GPA 4.00 (without fourth subject) in the scale of 5.0 and in HSC/Equivalent examination from Board of Intermediate and Secondary Education/Madrasa Education Board/Technical Education Board in science group the applicant must have obtained minimum 'A+' (Plus) in any TWO(2) subjects out of FIVE (5) subjects including Mathematics, Physics, Chemistry, English, and Bengali and 'A' in rest THREE (3) subjects.

(2) The applicant must have qualified in minimum five subjects including Mathematics, Physics, Chemistry and English Language with minimum 'B' in average in GCE 'O' Level and in 'A' level he/she must have obtained minimum 'A' in ONE subject out of three subjects including Mathematics, Physics, and Chemistry with and minimum 'B' in rest TWO subjects.

(3) Applicants who have passed HSC or Equivalent examination in the current year or one year before the notification for admission can apply.

(4) Sex: Male and Female.

b. **Foreign Students.** Maximum 3% of overall vacancies available will be kept reserved for the foreign students and will be offered to foreign countries through AFD of the Government of the People's Republic of Bangladesh. Applicants must fulfill the following requirements:

(1) Educational qualifications as applicable for Bangladeshi civil students or equivalent.

(2) Must have security clearance from respective Embassy/High Commission in Bangladesh.

(3) Sex: Male and Female.

In the event of non-availability of foreign students, Bangladeshi civil candidates will fill up the vacancies.

1.5 <u>Number of Seats</u>

The highest number of seats for 04(Four) years bachelor's degree in engineering programs (Unit – A) and 5 (Five) years bachelor's degree of Architecture programmes at MIST are as follows:

Ser.	Unit	Department	Seats
1		Civil Engineering (CE)	60
2		Computer Science and Engineering (CSE)	60
3		Electrical, Electronic & Communication Engineering (EECE)	60
4		Mechanical Engineering (ME)	60
5		Aeronautical Engineering (AE)	50
6		Naval Architecture and Marine Engineering (NAME)	40
7	A	Biomedical Engineering (BME)	40
8		Nuclear Science and Engineering (NSE)	40
9		Civil & Environmental Engineering	60
		Civil & Water Resources Engineering	
10		Industrial and Production Engineering (IPE)	50
11		Petroleum and Mining Engineering (PME)	25
12	В	Architecture (Arch)	25
	Total		570

At MIST, the total number is 570. In general, about 50% seats will be allocated to military officers. However, in case of the requirement of military students', vacancy is less in any particular year. The deficient vacancy will be filled up by civil students. MIST also maintains quota as mentioned below:

Allocation of Quota				
Ser.	Quota Types	Seats		
1	General Candidates	54%		
2	Children of Military Personnel	40%		
3	Children of Freedom Fighters	2%		
4	Tribal Citizen	1%		
5	International Students	3%		
	Total	100%		

1.6 Admission Procedure

1.6.1 Syllabus for Admission Test. Admission test will be conducted on the basis of the syllabus of Mathematics, Physics, Chemistry and English (comprehension and functional) subjects of HSC examinations of all boards of secondary and higher secondary school

certificates. Admission test will be conducted out of 200 marks and the distribution of marks is given below:

Ser.	Subjects	Marks
a.	Mathematics	80
b.	Physics	60
с.	Chemistry	40
d.	English	20
		Total = 200

Marks Distribution in the Admission Test

1.6.2 Final Selection. Students will be selected on the basis of results of the admission test. Individual choice for selection of departments will be given preference as far as possible. In case of tie in the result of admission test, difference will be judged on the basis of marks obtained in Mathematics, Physics, Chemistry and English respectively in admission test.

1.6.3 Medical Checkup. Civil candidates selected through admission test will go for medical checkup in MIST/CMH. If the medical authority considers any candidate unfit for study in MIST due to critical/contagious/mental diseases as shown in medical policy of MIST will be declared unsuitable for admission.

1.7 <u>Students Withdrawal Policy</u>

1.7.1 For Poor Academic Performance. The undergraduate (B. Sc.) Engineering programs for all engineering disciplines are planned for 04 regular levels, comprising of 08 regular terms for Architecture program it is planned for 3 & regular levels, comprising of 10 regular terms. It is expected that all students will earn degree by clearing all the offered courses in the stipulated time. In case of failure the following policies will be adopted:

a. Students failing in any course/subject will have to clear/pass the said course/subject by appearing it in supplementary/self-study (for graduating student) examination as per examination policy.

b. Students may also retake the failed subject/course in regular term/short term as per Examination policy.

c. Maximum grading for supplementary/self-study examination etc. of failed subjects will be B+ as per examination policy.

d. One student can retake/reappear in a failed subject/course only twice. However, with the Permission of Academic Council of MIST, a student may be allowed for third time as last chance.

e. In case of sickness, which leads to missing of more than 40% classes or miss term final examination (supported by requisite medical documents), students may be allowed to withdraw temporarily from that term and repeat the whole level with the regular level in the next academic session, subject to the approval of Academic Council, MIST. However, he/she has to complete the whole undergraduate program within 06 (six) academic years (for Architecture 07 academic years) from the date of his/her registration.

f. Minimum credit requirement for the award of bachelor's degree in Engineering (B. Sc. Engg) and Architecture (B. Arch) will be decide by the respective department as per existing rules. However, the minimum CGPA requirement for obtaining a bachelor's degree in engineering and Architecture is 2.20.

g. Whatever may be the cases, students have to complete the whole undergraduate Program within 06 (six) academic years from the date of registration.

h. All other terms and condition of MIST Examination Policy remain valid.

1.7.2 Expellation on Disciplinary Ground.

a. **Unfair Means.** Adoption of unfair means may result in expulsion of a student from the program and so from the Institution. The Academic Council will authorize such expulsion on the basis of recommendation of the Disciplinary Committee, MIST and as per policy approved by the affiliating university. Following would be considered as unfair means adopted during examinations and other contexts:

- (1) Communicating with fellow students for obtaining help in the examination.
- (2) Copying from another student's script/ report /paper.
- (3) Copying from desk or palm of a hand or from other incrimination documents.
- (4) Possession of any incriminating document whether used or not.

b. **Influencing Grades.** Academic Council may expel/withdraw any student for approaching directly or indirectly in any form to influence a teacher or MIST authority for grades.

c. **Other Indiscipline Behaviors.** Academic Council may expel any student on disciplinary ground if any form of indiscipline or unruly behavior is seen in him/her which may disrupt the academic environment/ program or is considered detrimental to MIST's image.

d. **Immediate Action by the Disciplinary Committee of MIST.** The Disciplinary Committee, MIST may take immediate disciplinary action against any student of the Institution. In case of withdrawal/expulsion, the matter will be referred to the Academic Council, MIST for post-facto approval.

1.7.3 Withdrawal on Own Accord.

a. **Permanent Withdrawal.** A student who has already completed some courses and has not performed satisfactorily may apply for a withdrawal.

b. Leave of Absence for certain number of semesters (1-2). A student, if he/she applies, may be allowed to withdraw temporarily from the program, subject to approval of Academic Council of MIST, but he/she has to complete the whole program within 06 (six) academic years (for Architecture 07 academic years) from the date of his/her registration.

CHAPTER 2

RULES AND REGULATIONS FOR UNDERGRADUATE PROGRAMME AT MIST

2.1 <u>Introduction</u>

MIST has started course system for undergraduate studies from the academic session 2017-18. Therefore, the rules and regulations mentioned in this paper will be applicable to students for administering undergraduate curriculum through the Course System. This policy will be introduced with an aim of creating a continuous, even and consistent workload throughout the term for the students.

2.2 <u>The Course System</u>

The salient features of the Course System are as follows:

a. Number of theory courses will be generally 06 or as per syllabus in each term. However, with the recommendation of course coordinator and Head of the Department, Commandant MIST may allow up to 07 courses in exceptional cases if dept can accommodate within 24 cr hr.

- b. Students will not face any level repeat for failing.
- c. Students will get scope to improve their grading.

d. Introduction of more optional courses to enable the students to select courses according to their individual needs and preferences.

- e. Continuous evaluation of students' performance.
- f. Promotion of student-teacher interaction and contact.

Beside the professional courses pertaining to each discipline, the undergraduate curriculum gives a strong emphasis on acquiring thorough knowledge in the basic sciences of mathematics, physics and chemistry. Due importance is also given on the study of several subjects in humanities and social sciences.

The first two years of bachelor's degree programs generally consist of courses on basic engineering, general science and humanities subjects; while the third and subsequent years focus on specific disciplines

2.3 <u>Number of Terms in a Year</u>

There will be two terms Spring Term (Jan-Jun) and Fall Term (Jul-Dec) in an academic year.

2.4 <u>Duration of Terms</u>

The duration of each of Spring Term and Fall Term (maximum 22 weeks) may be as under:

Ser.	Events	Durations
1.	Classes before Mid Term	7 weeks
2.	Mid Term Vacation	1 week
3.	Classes after Mid Term	7 weeks
4.	Makeup Classes and Preparatory leave	2/3 weeks
5.	Term Final Examination	2/3 weeks
6.	Term End Vacation	1/2 week

2.5 <u>Course Pattern and Credit Structure</u>

The undergraduate program is covered by a set of theoretical courses along with a set of laboratories (sessional) courses to support them.

2.6 <u>Course Designation System</u>

Each course is designated by a maximum of three/four letter code identifying the department offering the course followed by a three-digit number having the following interpretation:

a. The first digit corresponds to the year/level in which the course is normally taken by the students.

b. The second digit is reserved for departmental use. It usually identifies a specific area/group of study within the department.

c. The last digit is an odd number for theoretical courses and an even number for sessional courses.

The course designation system is illustrated as Follows:

ME 161 Introduction to Mechanical Engineering Course Title Odd digit designates a theoretical course Reserved for departmental use Signifies 1st Year/ 1st Level course Department Identification

2.7 Assignment of Credits

The assignment of credits to a theoretical course follows a different rule from that of a sessional course.

a. Theoretical Courses: One lecture per week per term is equivalent to one credit.

b. Sessional Courses: Credits for sessional courses is half of the class hours per week per term.

Credits are also assigned to project and thesis work taken by the students. The amount of credits assigned to such work varies from one discipline to another

2.8 <u>Types of Courses</u>

The types of courses included in the undergraduate curricula are divided into the following groups:

a. Core Courses: In each discipline, a number of courses are identified as core courses, which form the nucleus of the respective bachelor's degree program. A student has to complete all the designated core courses of his/her discipline.

b. Prerequisite Courses: Some of the core courses are identified as prerequisite courses for a specific subject.

c. Optional Courses: Apart from the core courses, the students can choose from a set of optional courses. A required number of optional courses from a specified group have to be chosen.

2.9 <u>Course Offering and Instruction</u>

2.9.1 The courses to be offered in a particular term are announced and published in the Course Catalog along with the tentative Term Schedule before the end of the previous term. The courses to be offered in any term will be decided by Board of Undergraduate Studies (BUGS) of the respective department.

2.9.2 Each course is conducted by a course teacher who is responsible for maintaining the expected standard of the course and for the assessment of students' performance. Depending on the strength of registered students (i.e., on the number of students) enrolled for the course, the teacher concerned might have course associates and Teaching Assistants (TA) to aid in teaching and assessment.

2.10 Course Instructor-Student Interaction

The new course system encourages students to come in close contact with the teachers. For promotion of a high level of teacher-student interaction each student is assigned to an adviser and the student is free to discuss all academic matters with his/her adviser. Students are also encouraged to meet any time with other teachers for help and guidance in academic matters. However, students are not allowed to interact with teachers after the moderation of questions.

2.11 <u>Student Adviser</u>

2.11.1 One adviser is normally appointed for a group of students by the BUGS of the concerned department. The adviser advises each student about the courses to be taken in each term by discussing the academic program of that particular term with the student.

2.11.2 However, it is also the student's responsibility to keep regular contact with his/her adviser who will review and eventually approve the student's specific plan of study and monitor subsequent progress of the student.

2.11.3 For a student of second and subsequent terms, the number and nature of courses for which he/she can register is decided on the basis of academic performance during the previous term. The adviser may permit the student to drop one or more courses based on previous academic performance.

2.12 <u>Course Registration</u>

Any student who uses classroom, laboratory facilities or faculty-time is required to register formally. Upon admission to the MIST, students are assigned to advisers. These advisers guide the students in choosing and registering courses.

2.12.1 Registration Procedure. At the commencement of each term, each student has to register for courses in consultation with and under the guidance of his/her adviser. The date, time and venue of registration are announced in advance by the Registrar's Office. Counseling and advising are accomplished at this time. It is absolutely essential that all the students be present for registration at the specified time.

2.12.2 Pre-conditions for Registration.

a. For first year students, department-wise enrollment/admission is mandatory prior to registration. At the beginning of the first term, an orientation program will be conducted for them where they are handed over with the registration package on submission of the enrolment slip.

b. Any student, other than the new batch, with outstanding dues to the MIST or a hall of

residence is not permitted to register. Each student must clear their dues and obtain a clearance certificate, upon production of which, he/she will be given necessary Course Registration Forms to perform course registration.

c. A student is allowed to register in a particular course subject to the class capacity constraints and satisfaction of pre-requisite courses. However, even if a student fails in a pre-requisite course in any term, the concerned department (BUGS) may allow him/her to register for a course which depends upon the pre- requisite course provided that his/her attendance and performance in the continuous assessment of the mentioned pre- requisite course is found to be satisfactory.

2.12.3 Registration Deadline. Each student must register for the courses to be taken before the commencement of each term. Late registration is permitted only during the first week of classes. Late registration after this date will not be accepted unless the student submits a written application to the registrar through the concerned Head of the department explaining the reasons for delay. Acceptable reasons may be medical problems with supporting documents from the Medical Officer of MIST or some other academic commitments that prohibit enrollment prior to the last date of registration.

2.12.4 Penalty for Late Registration. Students who fail to register during the designated dates for registration are charged a late registration fee of Tk. 100.00 (One hundred only) per credit hours. Penalty for late registration will not be waived.

2.13 Limits on the Credit Hours to be taken

2.13.1 A student should be enrolled for at least 15 credit hours and is allowed to take a maximum of 24 credit hours. Relaxation on minimum credit hours may be allowed. A student must enroll for the sessional courses prescribed in a particular term within the allowable credit hour limits.

2.13.2 In special cases where it is not possible to allot the minimum required 15 credit hours to a student, the concerned department (BUGS) may permit with the approval of the Comdt, a lesser number of credit hours to suit individual requirements. Only graduating students may be allowed to register less than 15 Cr Hr without approval of Commandant. A list of all such cases to be forwarded to Register Office, ICT dte and Controller of Exam Office by the respective Department.

2.14 <u>Course Add/Drop</u>

2.14.1 A student has some limited options to add or drop courses from the registration list. Addition of courses is allowed only within the first two weeks of a regular term. Dropping a course is permitted within the first four weeks of a regular term. Add or drop is not allowed after registration of courses for Supplementary-I and Supplementary-II Examination.

2.14.2 Any student willing to add or drop courses has to fill up a Course Adjustment Form. This also has to be done in consultation with and under the guidance of the student's respective adviser. The original copy of the Course Adjustment Form has to be submitted to the Registrar's Office, where the required numbers of photocopies are to be made for distribution to the concerned adviser, Head, Dean, Controller of Examinations and the student.

2.14.3 All changes must be approved by the adviser and the Head of the concerned department. The Course Adjustment Form has to be submitted after being signed by the concerned persons.

2.15 <u>Withdrawal from a Term</u>

If a student is unable to complete the Term Final Examination due to serious illness or serious accident, he/she may apply to the Head of the degree awarding department for total withdrawal from the term before commencement of term final examination. However, application may be considered during term final examination in special case. The application must be supported by a medical certificate from the Medical Officer of MIST. The concerned student may opt for retaining the sessional courses of the term. The Academic Council will take the final decision about such applications. However, the total duration for graduation will not exceed 6 academic years.

2.16 The Grading System

The total performance of a student in a given course is based on a scheme of continuous assessment, for theory courses this continuous assessment is made through a set of quizzes, class tests, class evaluation, class participation, homework assignment and a term final examination. The assessments for sessional courses are made by evaluating performance of the student at work during the class, viva- voce during laboratory hours and quizzes. Besides that, at the end there will be a final lab test. Each course has a certain number of credits, which describes its corresponding weightages. A student's performance is measured by the number of credits completed satisfactorily and by the weighted average of the grade points earned. A minimum grade point average (GPA) is essential for satisfactory progress. A minimum number of earned credits also have to be acquired in order to qualify for the degree.

Numerical Markings	Grade	Grade Points
80% and above	A+	4.00
75% to below 80%	А	3.75
70% to below 75%	A-	3.50
65% to below 70%	B+	3.25
60% to below 65%	В	3.00
55% to below 60%	B-	2.75
50% to below 55%	C+	2.50
45% to below 50%	С	2.25
40% to below 45%	D	2.00
below 40%	F*	0.00
	AB	Absent
	DC	Dis-collegiate
	VW	Voluntary Withdrawn
	X	Project/ Thesis Continuation
	Е	Expelled
	S	Satisfactory

Letter grades and corresponding grade points will be given as follows:

* Subject in which the student gets F grade shall not be regarded as earned credit hours for the calculation of Grade Point Average (GPA).

2.17 Distribution of Marks

2.17.1 Theory. Forty percent (40%) of marks of a theoretical course shall be allotted for Continuous Assessment, i.e., assignments, class tests, pop quizzes, observations, projects and mid-term assessment. These marks must be submitted to Office of the Controller of Examinations before commencement of the final exam. The rest of the marks will be allotted to the Term Final Examination. The duration of final examination will be three (03) hours. The scheme of continuous assessment that a particular teacher would follow for a course will be announced on the first day of the classes. Distribution of marks for a given course per credit is as follows:

Class Performance	5%
Class Attendance	5%
Class Test/Assignment	20%
Mid-Term Assessment (Exam/Project)	10%
Final Examination (Section A & B)	60%
Total	100%

Basis for awarding marks for class attendace will be as follwos:

Class Attemdace	Marks
90% and above	100%
85% to less than 90%	90%
80% to less than 85%	80%
75% to less than 70%	70%
70% to less than 75%	60%
Below 70%	00%

Note:

a. In final exam, each section can be used for achieving not more than two course outcomes (COs). The remaining COs should be attained from mid-term assessment or class tests. Course teacher has to inform the student the beginning of the terms.

b. Course teacher of a particular course has to inform the department whether he/she wants to assess mid-term through exam or project within first two weeks of beginning of a term. The duration of mid-term examination should not be more than 50 minutes which has to be conducted in between 6^{th} to 9^{th} week of a semester. If mid-term assessment is done through project, then there should be project report and presentation.

c. The weightage of class performance can be assessed through checking attentiveness during classes or arranging unnoticed pop quizzes.

d. The number of class tests shall be n for 3.0 and above credit courses and (n-1) shall be considered for grading where n is the number of credits of the course. However, for courses having credits below 3.0, the considered class tests shall be 2 out of 3.

e. All class test will carry 20 marks each. Exam software system will finally convert these achieved marks into total class test marks as per credit hour. i.e for n=1(20), n=2 (40), n=3 (60), n=4(80) etc.

f. Irrespective of the result of the continuous assessment (class performance, class test, mid-term assessment), a student has to appear in the final examination (where applicable) for qualifying/passing the concern course/ subject.

2.17.2 Sessional/Practical Examinations. Laboratory/sessional courses are designed and conducted by the concerned departments. Examination on laboratory/sessional/practical subjects will be conducted by the respective department before the commencement of term final examination. The date of practical examination will be fixed by the respective department. Students will be evaluated in the laboratory/sessional courses on the basis of the followings:

Conduct of Lab Tests/Class Performance	25%
Report Writing/Programming	15%
Mid-Term Evaluation (exam/project/assignment)	20%
Final Evaluation (exam/project/assignment)	30%
Viva Voce/Presentation	10%
Total	100%

Note: the above distribution of percentage is a general guideline. Department can rearrange to some extent if required.

2.17.3 Sessional Course in English. The distribution will be as under:

Class performance/observation	10%
Written Assignment	15%
Oral Performance	25%
Listening Skill	10%
Group Presentation	30%
Viva Voce	10%
Total	100%

2.17.4 Class Attendance. Class attendance may be considered as a part of continuous assessment. No mark will be allotted for attending classes.

2.18 Collegiate and Non-collegiate

Students having class attendance of 85% or above in individual subject will be treated as collegiate and less than 85% and up to 70% will be treated as non-collegiate in that subject. The non-collegiate student(s) may be allowed to appear in the examination subject to payment of non-collegiate fee/fine of an amount fixed by MIST/BUP. Students having class attendance below 70% will be treated as discollegiate and will not be allowed to appear in the examination and treated as fail. But in a special case such students may be allowed to appear in the examination with the permission of Commandant and it must be approved by the Academic Council.

2.19 <u>Calculation of CGPA</u>

Grade Point Average (GPA) is the weighted average of the grade points obtained of all the courses passed/completed by a student. For example, if a student passes/completes n courses in a term having credits of C1, C2, ..., Cn and his grade points in these courses are G1, G2, Gn respectively, then $\label{eq:GPA} \textit{GPA} = \frac{\textit{Grade points earned in the semester}}{\textit{Credits completed in the semester}}$

= <u>Summation of (Credit hours in a course * Grade point earned in that course)</u> <u>Total number of credit hours completed</u>

$$=\frac{\sum_{i=1}^{n}Ci*Gi}{\sum_{i=1}^{n}Ci}$$

The Cumulative Grade Point Average (CGPA) is the weighted average of the GPA obtained in all the terms passed/completed by a student. For example, if a student passes/ completes n terms having total credits of TC1, TC2, ..., TC n and his GPA in these terms are GPA1, GPA2, , GPA n, respectively then

$$CGPA = \frac{\sum_{i=1}^{n} TCi * GPAi}{\sum_{i=1}^{n} TCi}$$

A Numerical Example

Suppose a student has completed eight courses in a term and obtained the following grades:

Course	Credits,	Grade	Grade	C _I *G _i
	C_i		Points, G _i	
ME 160	1.50	A-	3.50	5.250
ME 165	3.00	A+	4.00	12.000
CHEM 101	3.00	А	3.75	11.250
MATH 141	3.00	В	3.00	9.000
HUM 101	3.00	B-	2.75	8.250
HUM 103	3.00	В	3.00	9.000
PHY 105	3.00	A+	4.00	12.000
CSE 102	2 1.50	А	3.75	5.625
Total	21.00			72.375

GPA = 72.375/21.00 = 3.45

Suppose a student has completed four terms and obtained the following GPA.

		Credit Hours	GPA	
Level	Term	Earned,	Earned,	GPA _i *TC _i
		TCI	GPA _i	
1	1	21.00	3.73	78.330
1	2	20.50	3.93	80.565
2	1	19.75	3.96	78.210
2	2	20.25	4.00	81.000
Total		81.50		318.105

CGPA = 318.105/81.50 = 3.90

2.20 Impacts of Grade Earned

2.20.1 The courses in which a student has earned a 'D' or a higher grade will be counted as credits earned by him/her. Any course in which a student has obtained an 'F' grade will not be counted towards his/her earned credits or GPA calculation. However, the 'F' grade will remain permanently on the Grade Sheet and the Transcript.

2.20.2 A student who obtains an 'F' grade in a core course will have to repeat that particular course. However, if a student gets an 'F' in an optional course, he/she may choose to repeat that course or take a substitute course if available. When a student will repeat a course in which he/she has previously obtained an 'F', he/she will not be eligible to get a grade better than 'B+' in that repeated course.

2.20.3 If a student obtains a grade lower than 'B+' in a particular course he/she will be allowed to repeat the course only once for the purpose of grade improvement. However, he/she will not be eligible to get a grade better than 'B+' for an improvement course.

2.20.4 A student will be permitted to repeat for grade improvement purposes a maximum of 6 courses in BSc. Engineering programs and a maximum of 7 courses in B. Arch. program.

2.20.5 If a student obtains a 'B+' or a better grade in any course he/she will not be allowed to repeat the course for the purpose of grade improvement.

2.21 <u>Classification of Students</u>

At MIST, regular students are classified according to the number of credit hours completed/ earned towards a degree. The following classification applies to all the students:

Level	Credit Hours Earned		
	Engineering/URP	Architecture	
Level 1 Level 2 Level 3 Level 4 Level 5	0.0 to 36.0 More than 36.0 to 72.0 More than 72.0 to 108.0 More than 108.0	0.0 to 34.0 More than 34.0 to 72.0 More than 72.0 to 110.0 More than 110.0 to 147.0 More than 147.0	

However, before the commencement of each term all students other than new batch are classified into three categories:

Category 1: This category consists of students who have passed all the courses described for the term. A student belonging to this category will be eligible to register for all courses prescribed for the upcoming term.

Category 2: This category consists of students who have earned a minimum of 15 credits but do not belong to category 1. A student belonging to this category is advised to take at least one course less since he might have to register for one or more backlog courses as prescribed by his/her adviser.

Category 3: This category consists students who have failed to earn the minimum required 15 credits in the previous term. A student belonging to this category is advised to take at least two courses less than a category 1 student subject to the constraint of registering at least 15 credits. However, he will also be required to register for backlog courses as prescribed by the adviser.

2.22 <u>Definition of Graduating Student</u>. Graduating students are those students who will have \leq 24 credit hour for completing the degree requirement.

2.23 <u>Performance Evaluation</u>

2.23.1 The performance of a student will be evaluated in terms of two indices, viz. Term Grade Point Average and Cumulative Grade Point Average which is the grade average for all the terms completed.

2.23.2 Students will be considered to be making normal progress toward a degree if their Cumulative Grade Point Average (CGPA) for all work attempted is 2.20 or higher. Students who regularly maintain a term GPA of 2.20 or better are making good progress toward the degrees and are in good standing with MIST. Students who fail to maintain this minimum rate of progress will not be in good standing. This can happen when any one of the following conditions exists:

- a. The term GPA falls below 2.20.
- b. The Cumulative Grade Point Average (CGPA) falls below 2.20.

c. The earned number of credits falls below 15 times the number of terms attended.

2.23.3 All such students can make up their deficiencies in GPA and credit requirements by completing courses in the subsequent term(s) and supplementary exams, if there are any, with better grades. When the minimum GPA and credit requirements are achieved the student is again returned to good standing.

2.24 <u>Minimum Earned Credit and GPA Requirement for Obtaining Degree</u>

2.24.1 Minimum credit hour requirements for the award of Bachelor's degree in engineering (BSc Engg) and architecture (B Arch) will be decided by the respective department (BUGS). However, the syllabus of all BSc engineering prog must be of minimum 157 credit hours or more and for architecture prog minimum 189 credit hours or more. A student must earn minimum credit hour set in the syllabus by the concerned department for qualifying Bachelor's Degree. The minimum CGPA requirement for obtaining a Bachelor's degree in engineering and architecture is 2.20.

2.24.2 A student may take additional courses with the consent of his/her Adviser in order to raise CGPA, but he/she may take a maximum of 15 such additional credits in engineering and 18 such additional credits in architecture beyond respective credit-hour requirements for Bachelor's degree during his/her entire period of study.

2.25 Application for Graduation and Award of Degree

A student who has fulfilled all the academic requirements for Bachelor's degree will have to apply to the Controller of Examinations through his/her Adviser for graduation. Provisional Degree will be awarded by BUP on completion of credit and GPA requirements.

2.26 <u>Time Limits for Completion of Bachelor's Degree</u>

A student must complete his/her studies within a maximum period of six years for engineering and seven years for architecture bachelor's degrees.

2.27 Attendance, Conduct and Discipline

MIST has strict rules regarding the issues of attendance in class and discipline.

2.27.1 Attendance. All students are expected to attend classes regularly. MIST believes that attendance is necessary for effective learning. The first responsibility of a student is to attend classes regularly and one is required to attend the classes as per MIST rules.

2.27.2 Conduct and Discipline. During their stay in MIST all students are required to abide by the existing rules, regulations and code of conduct. Students are strictly forbidden to form or be members of student organization or political party, club, society etc., other than those set up by MIST authority in order to enhance student's physical, intellectual, moral and ethical development. Zero tolerance in regards of sexual abuse and harassment in any forms, and drug abuse and addiction are strictly observed in the campus

2.28 <u>Teacher-Student Interaction</u>

The academic system in MIST encourages students to come in close contact with the teachers. For promotion of high level of teacher-student's interaction, a course coordinator (CC) is assigned to each course. Students are free to discuss with CC about all academic matters. Students are also encouraged to meet other teachers any time for help and guidance for academic matters. Heads of the departments, Director of Administration, Director of Students Welfare (DSW), Dean and Commandant address the students at some intervals. More so, monthly Commandant's Parade is organized in MIST where all faculty members, staff and students are formed up, thereby increasing teacher-student interaction.

2.29 <u>Absence during a Term</u>

A student should not be absent from quizzes, tests, etc. during the term. Such absence will naturally lead to reduction in points/marks, which count towards the final grade. Absence in the Term Final Examination will result in an F grade in the corresponding course. A student who has been absent for short periods, up to a maximum of three weeks due to illness, should approach the course teacher(s) or the course coordinator(s) for make-up quizzes or assignments immediately upon return to classes. Such request has to be supported by medical certificate from competent authority (e.g., CMH/MIST Medical Officer).

2.30 <u>Recognition of Performance</u>

Following different types of final examinations will be conducted in MIST to evaluate the students of Undergraduate Programs:

a. Term Final Examination: At the end of each normal term (after 22wk or so), Term Final Examination will be held. Students will appear in the Term Final Examination for all the theory courses they have taken in the Term.

b. Supplementary Examination: It will take place twice in a year. Supplementary-I is defined as provision of giving exam in the first week of Spring Term (Jan-Jun) / Fall Term (Jul-Dec) end break and Supplementary-II in the first week of Fall Term (Jul-Dec) / Spring Term (Jan-Jun) end break, respectively. Students will be allowed to register for a maximum of two theory courses (Failed/Improvement) in Supplementary-I and maximum of one theory course (Failed/Improvement)

in Supplementary-II.

c. Improvement Examination: It will be taken during Supplementary-I and Supplementary-II Examination. Questions will be same as the question of the regular examination of that Supplementary Examination (if any). Student can take maximum two subjects at a time (two subjects in supplementary-I and one subject in supplementary-II) and maximum 6 subjects in the whole academic duration. If a student obtains a grade lower than 'B+' in a course, he/she will be allowed to repeat the course only once for grade improvement. However, he/she will not be eligible to get a grade better then 'B+' for an improvement course. Among the previous result and improvement examination result, best one will be considered as final result for an individual student. However, performance of all examination i,e previous to improvement examination, shall be reflected in the transcript.

2.31 <u>Rules of Different Examinations</u>

2.31.1 Term Final Examination. Following rules to be followed:

a. Registration to be completed before commencement of the Term. A student has to register his desired courses paying registration, examination fee and other related fees.

b. Late registration will be allowed without penalty within first two weeks of the term.

c. Within 1st two weeks of a term a student can Add/Drop course/courses. To add a course, in the 3rd week, one has to register the course by paying additional fees. To drop a course, one has to apply within three weeks and paid fees will be adjusted/ refunded. If anyone wants to drop a course after three weeks and within 4 weeks, that will be permitted but paid fees will not be refunded in that case.

d. Registrar office will finalize registration of all courses within 7 (seven) weeks, issue registration slip and that will be followed by issuing Admit Card.

e. Term Final Examination to be conducted in the $18^{\text{th}}-20^{\text{th}}$ week of the term as per approved Academic Calendar.

2.31.2 Supplementary Examination. Following rules to be followed:

a. Supplementary-I is defined as provision of giving exam in the first week of Spring Term (Jan-Jun) / Fall Term (Jul-Dec) end break and Supplementary-II in the first week of Fall Term (Jul-Dec) / Spring Term (Jan-Jun) end break, respectively.

b. Students will be allowed to register for a maximum of two theory courses (Failed/Improvement) in Supplementary-I and maximum of one theory course (Failed/Improvement) in Supplementary-II.

c. No class will be conducted.

d. 40% marks will be considered from the previous exams.

e. Maximum grading in Supplementary Exam will be 'B+'.

f. No Sessional Exam will be conducted.

g. Examination will be taken on 60% marks like Term Final Examination.

h. If a student fails in a course more than once in regular terms, then for calculating 40% marks best one of all continuous assessment marks will be counted.

i. If anyone fails in the laboratory/sessional course, that course cannot be taken in the supplementary examination.

j. If any student fails in a course, he can clear the course retaking it 2nd time or, he can clear the examination appearing at the supplementary examination as well. Any one fails twice in a course, can only retake it in the regular term for appearing third time. But anyone fails even after appearing third time. He/she has to take approval of Academic Council of MIST for appearing 4th (last) time in a course and need to pay extra financial penalty. If any student fails even 4th time in a course, will not be allowed to appear anymore in this same course

k. Registration of Supplementary-I Exam to be done within 5th wk after completion of Fall Term (July to Dec) and registration of Supplementary-II exam to be done during the Mid-Term break of Spring Term (Jan to Jun), paying all the required fees.

1. There will be no provision for add/drop courses after registration.

m. Question Setting, Moderation, and Result Publication to be done following the same rules of Spring (Jan to Jun) / Fall (July to Dec) Term Final Exam as per existing Examination Policy.

n. Moderation of the questions for Supplementary-I will be done in the 5th week after completion of Fall Term (July to Dec) Final Exam and Supplementary-II with the moderation of the questions of Spring Term (Jan to Jun).

o. Separate Tabulation sheet to be made.

p. Thesis: if a student cannot complete thesis in two consecutive terms, with the recommendation of the supervisor, he/she may continue for next one/two term within six academic years.

2.31.3 Improvement Examination. Following rules to be followed:

a. Improvement examination is to be taken during the Supplementary-I and Supplementary-II examinations.

b. For Improvement examination, registration is to be done during the registration of Supplementary-I and Supplementary-II examinations by paying all the fees.

c. Question Setting, Moderation and Result Publication to be done with courses of Supplementary-I and Supplementary-II examinations.

d. Any student gets a grading below 'B+' and desires to improve that course, he will be allowed to appear the improvement examination for that particular course.

e. Highest grade of Improvement examination will be 'B+'.

f. One student is allowed to appear at Improvement exam in 6 (six) courses in his whole graduation period taking maximum two courses at a time (two courses at supplementary-I and one course at supplementary-II).

2.32 Irregular Graduation

If any graduating student clears his/her failed course in Spring Term/Fall Term/ Supplementary examinations and his graduation requirements are fulfilled, his graduation will be effective from the result publication date of Spring Term/Fall Term/Supplementary examinations and that student will be allowed to apply for provisional certificate.

CHAPTER 3

DEPARTMENT OF MECHANICAL ENGINEERING

3.1 Introduction to the program

Department of ME commenced undergraduate programs from January 2003 with 45 students. Mechanical Engineers apply the principles of mechanics and energy to the design of machines and devices. They must be able to control mechanical systems and usually work with other professionals in designing these systems. Automobiles, engines, heating and air-conditioning system, gas and steam turbines, air and space vehicles, trains, ships, servomechanisms, transmission mechanisms, machine tools, material handling systems, elevators and escalators, and robots used in industry are a few of the systems and devices requiring mechanical engineering knowledge.

The Department of Mechanical Engineering offers dynamic educational programs and a faculty poised to deliver quality engineering education. The department also offers studies leading to the Bachelor of Science in Mechanical Engineering (BSc in ME), Master of Science in Mechanical Engineering (MSc in ME) and Doctor of Philosophy in Mechanical Engineering (PhD in ME). With its excellent professional views and capabilities of teaching, BSc in Mechanical Engineering (BSc in ME) degree program has received accreditation from BAETE, IEB with a grade as "Good".

3.2 Vision and Mission of the Program

Vision: To be nationally and internationally recognized in providing world class mechanical engineering education, producing qualified engineers who are innovative, immediate contributors to their profession and society and successful in advanced studies and research.

Mission:

1. To educate and motivate the students through well designed curriculum for knowing the fundamental and technical knowledge in Mechanical Engineering discipline.

2. To produce skilled human resources capable of investigation, analysis and design solutions for relevant technical problems while also adhering to social values.

3. To enhance technical as well as entrepreneurship skills with ethical values through collaborations with various academic institutions, research organizations and industries.

4. To promote Research and Development (R&D) for technological innovations in the emerging areas of mechanical engineering

3.3 <u>Program Outcomes</u>

Based on the suggestion of Board of Accreditation for Engineering and Technical Education (BAETE), Bangladesh, the Bachelor in Mechanical Engineering program will have following learning outcomes:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, research the literature and analyze complex engineering problems and reach substantiated conclusions using first principles of mathematics, the natural sciences and the engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety as well as cultural, societal and environmental concerns.

4. Investigation: Conduct investigations of complex problems, considering design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.

5. Modern tool usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.

7. Environment and sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics, responsibilities and the norms of the engineering practice.

9. Individual work and teamwork: Function effectively as an individual and as a member or leader of diverse teams as well as in multidisciplinary settings.

10. Communication: Communicate effectively about complex engineering activities with the engineering community and with society at large. Be able to comprehend and write effective reports, design documentation, make effective presentations and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work as a member or a leader of a team to manage projects in multi-disciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent, life-long learning in the broadest context of technological change.

3.4 Generic Skills

1. Apply the principles and theory of mechanical engineering knowledge to the requirements, design and development of different mechanical systems with appropriate understanding.

2. Define and use appropriate research methods and modern tools to conduct a specific project.

- 3. Learn independently, be self- aware and self- manage their time and workload.
- 4. Apply critical thinking to solve complex engineering problems
- 5. Analyze real time problems and justify the appropriate use of technology
- 6. Work effectively with others and exhibit social responsibility

3.5 <u>Curriculum/Skill mapping</u>

CHAPTER 4

COURSE CURRICULUM FOR BACHELOR DEGREE IN ME

4.1 <u>Course Schedule</u>

Keeping the above-mentioned program outcome, the course schedule for the undergraduate students of the Department of Mechanical Engineering is given below:

Level- Term	General Education Cr Hr	Math Cr Hr	Basic Science Cr Hr	Dept Engg Cr Hr	Allied Engg Cr Hr	Optional Courses Cr Hr	Total Cr Hr
1-I	2.0+0.0	3.0+0.0	3.0+1.5	5.0+3.0	3.0+0.0	-	20.50
1-II	0.0+1.5	3.0+0.0	3.0+1.5	3.0+1.5	3.0+1.5	-	18.00
2-I	0.0+1.5	3.0+0.0	-	6.0+3.0	3.0+1.5	-	18.00
2-II	2.0+0.0	3.0+0.0	-	12.0+4.5	-	-	21.50
3-I	2.0+2.0	-	-	13.0+4.5	-	-	21.50
3-II	2.0+0.0	-	-	11.0+6.5	-	-	19.50
4-I	2.0+0.0	-	-	9.0+4.5	-	6.0**+0.0	21.50
4-II	4.0+0.0	-	-	3.0+3.0	2+1.5	6.0**+0.0	19.50
Total	14.0+5.0 =19.0	12.0+0.0 =12.0	6.0+3.0 =9.0	62.0+30.50 = 92.50	11+4.5 =15.5	12+0 =12.0	160.00
% of total theory course	11.97%	10.26%	5.13%	52.99%	9.40%	10.25%	
% of total course	11.88%	7.5%	5.63%	57.81%	9.68%	7.5%	

Table: Summary of Course Curriculum

**To be selected from the List of Elective Courses

4.2 <u>Contact Hours and Credit Hours Distribution in Eight Terms</u>

Level Term	Contact hours for theory courses	Contact hours for sessional coursesCumulative contact hours		Cumulative credit hours
1-I	16.0	9.0	25.0	20.50
1-II	12.0	12.0	49.0	38.5
2-I	12.0	12.0	73.0	56.5
2-II	17.0	9.0	99.0	78.0
3-I	15.0	13.0	127.0	99.5
3-II	13.0	11 + 04 Weeks	151+04 Weeks	119

4-I	17.0	9.0	175+04 Weeks	140.5
4-II	15.0	9.0	199+ 04Weeks	160.00
Total	119.0	79.5+04 Weeks	199 + 04 Weeks	160.00

4.3 <u>Term-wise Distribution of Courses</u>

LEVEL- 1 TERM-I				
Caura Na	Course Name	Type of	Contact	Credit
Course No		Course	hours	Hours
ME 161	Introduction to Mechanical Engineering	Theory	2.00	2.00
ME 103	Thermodynamics	Theory	3.00	3.00
EECE 159	Fundamentals of Electrical Engineering	Theory	3.00	3.00
DUV 101	Waves and Oscillations, Optics and Modern	Theory	3.00	3.00
PHT 101	Physics			
MATH 101	Differential and Integral Calculus	Theory	3.00	3.00
GEBS 101	Bangladesh Studies	Theory	2.00	2.00
			16.00	16.00
PHY 102	Physics Sessional	Sessional	3.00	1.50
ME 104	Thermodynamics Sessional	Sessional	3.00	1.50
SHOP 162	Workshop Practice Sessional	Sessional	3.00	1.50
9.00				4.50
Contact hours: 25.00; Credit hours: 20.50				

LEVEL-1 TERM-II

Course No	Course Nome	Type of	Contact	Credit
		Course	hours	Hours
ME 193	Engineering Materials	Theory	3.00	3.00
CHEM 101	Fundamentals of Chemistry	Theory	3.00	3.00
MATH 103	Differential Equations and Matrix	Theory	3.00	3.00
EECE 173	Electrical and Electronics Technology	Theory	3.00	3.00
			12.00	12.00
CHEM 102	Chemistry Sessional	Sessional	3.00	1.50
LANG102	Communicative English I	Sessional	3.00	1.50
ME 194	Engineering Materials Sessional	Sessional	3.00	1.50
FECE 174	Electrical and Electronics Technology	Sessional	3.00	1.50
EECE 174	Sessional			
12.00 6.				6.00
Contact hours: 24.00; Credit hours: 18.00				

LEVEL -2, TERM - I

Course No.	Course Name	Type of	Contact	Credit
Course No	Course Maille	course	hours	hours
CSE 275	Computer Programming Language	Theory	3.00	3.00
ME 245	Engineering Mechanics-I	Theory	3.00	3.00
MATH 201	Vector Analysis, Laplace Transform&	Theory	3.00	3.00
	Co-ordinate Geometry			
ME 205	Heat and Mass Transfer	Theory	3.00	3.00
			12.00	12.00
CSE 276	Computer Programming Language	Sessional	3.00	1.50
	Sessional			
ME 258	Mechanical Engineering Drawing –I	Sessional	3.00	1.50
ME 206	Heat and Mass Transfer Sessional	Sessional	3.00	1.50
LANG202	Communicative English II	Sessional	3.00	1.50
				6.00
Contact hours: 24.00; Credit hours: 18.00				

LEVEL-2, TERM –II

Course No	Course Name	Type of	Contact	Credit
Course No	Course Name	course	hours	hours
ME 247	Engineering Mechanics - II	Theory	3.00	3.00
ME 233	Manufacturing Technology	Theory	3.00	3.00
ME 207	Heat Transfer Equipment Design	Theory	3.00	3.00
MATH 215	Complex Variable, Harmonic Function and Fourier Analysis	Theory	3.00	3.00
GELM 275	Leadership and Management	Theory	2.00	2.00
ME 263	Numerical Analysis	Theory	3.00	3.00
			17.00	17.00
ME 234	Manufacturing Technology Sessional	Sessional	3.00	1.50
ME 264	Numerical Analysis Sessional	Sessional	3.00	1.50
ME 260	Mechanical Engineering Drawing –II	Sessional	3.00	1.50
				4.50
Contact hours: 26.00; Credits hours: 21.50				

LEVEL – 3, TERM –I

Course No	Course Name	Type of	Contact	Credit	
		course	hours	hours	
ME 361	Instrumentation and Measurement	Theory	2.00	2.00	
ME 343	Mechanics of Solids	Theory	3.00	3.00	
ME 375	Control Engineering	Theory	2.00	2.00	
ME 303	Power plant Engineering	Theory	3.00	3.00	
ME 321	Fluid Mechanics-I	Theory	3.00	3.00	
GEE 305	Fundamentals of Economics	Theory	2.00	2.00	
			15.00	15.00	
ME 344	Mechanics of Solids Sessional	Sessional	3.00	1.50	
ME 376	Control Engineering Sessional	Sessional	3.00	1.50	
ME 304	Power plant Engineering Sessional	Sessional	3.00	1.50	
GERM 352	Fundamentals of Research Methodology	Sessional	4.00	2.00	
			1300	6.50	
Contact hours: 28.00; Credit hours: 21.50					

LEVEL –3, TERM – II

Course No	Course Name	Type of	Contact	Credit
		course	hours	hours
GES 307	Fundamentals of Sociology	Theory	2.00	2.00
ME 345	Mechanics of Machinery	Theory	3.00	3.00
ME 323	Fluid Mechanics-II	Theory	2.00	2.00
ME 341	Machine Design	Theory	3.00	3.00
ME 367	Automobile Engineering	Theory	3.00	3.00
			13.00	13.00
ME 324	Fluid Mechanics Sessional	Sessional	3.00	1.50
ME 346	Mechanics of Machinery Sessional	Sessional	3.00	1.50
ME 368	Automobile Engineering Sessional	Sessional	3.00	1.50
ME 366	Engineering Simulation	Sessional	2.00	1.00
ME 372*	Industrial Training	Training	4 weeks	1.00
			11 Hr + 4	6 50
			weeks	0.50
Contact hours: $24.00 + 04$ Weeks; Credit hours: 19.50				

* Will be conducted after the completion of Level- 3, at any convenient time as can be arranged by the Department.

Course No	Course Name	Type of	Contact	Credit
		course	hours	hours
GEPM 467	Project Management & Finance	Theory	2.00	2.00
ME 421	Fluid Machinery	Theory	3.00	3.00
ME 401	IC Engine	Theory	3.00	3.00
ME 405	Heating, Ventilation and Air conditioning	Theory	3.00	3.00
Optional I ¹	Selected from prescribed optional subjects	Theory	3.00	3.00
Optional II ¹	Selected from prescribed optional subjects	Theory	3.00	3.00
			17.00	17.00
ME 402	IC Engine Sessional	Sessional	3.00	1.50
ME 400	Final Year Design and Research Project - I	Sessional	6.00	3.00
			9.00	4.50
Contact hours: 26.00; Credit hours: 21.50				

LEVEL – 4, TERM – II

Course No	Course Name	Type of	Contact	Credit
		course	hours	hours
ME 445	Noise and vibration	Theory	3.00	3.00
GESL 407	Environment, Sustainability and Law	Theory	2.00	2.00
GEEM 437	Engineering Ethics & Moral Philosophy	Theory	2.00	2.00
IPE 463	CAD/CAM	Theory	2.00	2.00
Optional III ²	Selected from prescribed optional subjects	Theory	3.00	3.00
Optional IV ²	Selected from prescribed optional subjects	Theory	3.00	3.00
			15.00	15.00
IPE 464	CAD/CAM Simulation sessional	Sessional	3.00	1.50
ME 400	Final Year Design and Research Project - II	Sessional	6.00	3.00
			9.00	4.50
Contact hours: 24.00; Credit hours: 19.50				

4.4 List of Elective Courses

Course No	Course Name	Level-Term	Contact	Credit
			Hours	Hours
ME 407	Advanced Thermodynamics	4-I or 4-II	3.0	3.00
ME 409	Renewable Energy	4-I or 4-II	3.0	3.00
ME 411	Combustion and Pollution	4-I or 4-II	3.0	3.00
ME 413	Energy and Environment	4-I or 4-II	3.0	3.00
ME 415	Advanced Programming with MATLAB	4-I or 4-II	3.0	3.00
ME 417	Multiphase Flows	4-I or 4-II	3.0	3.00
ME 419	Introduction to Nanomaterials and Nanotechnology	4-I or 4-II	3.0	3.00
ME 423	Fluid Engineering	4-I or 4-II	3.0	3.00
ME 425	Aerodynamics	4-I or 4-II	3.0	3.00
ME 427	Applied Engineering Mathematics	4-I or 4-II	3.0	3.00
ME 429	Gas Dynamics	4-I or 4-II	3.0	3.00
ME 431	Finite Element Method	4-I or 4-II	3.0	3.00
ME 433	Fluid Power and Control	4-I or 4-II	3.0	3.00
ME 435	Introduction to CFD	4-I or 4-II	3.0	3.00
ME 437	Design of Fluid Machines	4-I or 4-II	3.0	3.00
ME 439	Biomedical Fluid Mechanics	4-I or 4-II	3.0	3.00
ME 441	Theory of Structures	4-I or 4-II	3.0	3.00
ME 447	Robotics	4-I or 4-II	3.0	3.00
ME 449	Composite Materials	4-I or 4-II	3.0	3.00
ME 451	Aircraft & Aero-engine Structure	4-I or 4-II	3.0	3.00

ME 453	Applied Aerodynamics	4-I or 4-II	3.0	3.00
ME 455	Fire Safety and Engineering	4-I or 4-II	3.0	3.00
ME 459	Preventive Maintenance	4-I or 4-II	3.0	3.00
ME 463	Petroleum Engineering	4-I or 4-II	3.0	3.00
ME 465	Automotive Chassis Engineering	4-I or 4-II	3.0	3.00
ME 467	Autotronics	4-I or 4-II	3.0	3.00
ME 469	Vehicle Dynamics	4-I or 4-II	3.0	3.00
ME 471	Bio-Engineering	4-I or 4-II	3.0	3.00
ME 473	Plastic Process Technology	4-I or 4-II	3.0	3.00
ME 475	Modern Manufacturing Technology	4-I or 4-II	3.0	3.00
ME 477	Metal Cutting Processes	4-I or 4-II	3.0	3.00
ME 479	Occupational Health and safety engineering	4-I or 4-II	3.0	3.00
ME 483	Standards and inspection	4-I or 4-II	3.0	3.00
ME 485	Introduction to Nuclear Engineering	4-I or 4-II	3.0	3.00
ME 487	Tools Engineering	4-I or 4-II	3.0	3.00
ME 489	Automobile Maintenance Engineering	4-I or 4-II	3.0	3.00
ME 491	Mems Devices - Design and Fabrication	4-I or 4-II	3.0	3.00
ME 493	Material Handling	4-I or 4-II	3.0	3.00
ME 495	Mechatronics	4-I or 4-II	3.0	3.00
ME 497	Textile Technology	4-I or 4-II	3.0	3.00
ME 499	Weapon Engineering	4-I or 4-II	3.0	3.00
CHAPTER 5

COURSE DESCRIPTION

5.1 CORE COURSES OFFERED

Spring Semester L-1, T-1

COURSE INFORMATION

	NE 102		
CourseCode Course Title	ME 103	Lecture Contact Hours	: 3.00
	Thermodynamics	Credit Hours	
		Credit Hours	: 3.00

PRE-REQUISITE

N/A

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

An understudy is acclimated with the fundamental concepts and standards of thermodynamics, as well as the application of mathematical constructs to understand energy flow and conservation. The idea of entropy, and the relationship between work and heat are emphasized with pertinent problems solving approach. The standards and concepts discussed and learned are applied in ensuing courses to address real life related problems in the field of steam cycles, internal combustion engines, air compressors, refrigeration and combustion modelling.

OBJECTIVE

- 1. Introduce to one of the most powerful engineering principles Thermodynamics: the science of transferring energy from one place or form to another place or form.
- 2. Familiarize with the zeroth, first and second laws of thermodynamics and show how to apply these laws.
- 3. Instruct in analysing air standard cycles, such as reciprocating piston engines, gas turbine engines, vapour power cycles and other cycles used in power plants and refrigeration units.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Understand the Zeroth, First, Second and Third Laws of thermodynamics, and use the laws of	1, 2, 12	C1, C2, C3	1, 2, 3,	1		Q, ASG, F

	thermodynamics to solve a variety of problems, such as the expansion of gases and the efficiency of heat engines					
CO2	Analyse the efficiency and properties of thermodynamic cycles for heat engines, refrigerators, heat pumps and other important mechanical devices.	1, 2	C1, C2, C3	1, 2, 3,	1	Q, ASG, F
CO3	Distinguish the interfaces between the ideal thermodynamic cycles and real cycles used in various applications.	1, 2	C1, C2, C3	3, 4		Q, ASG, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a) Main Contents:

- I. Introduction and Basic Concepts
- II. Thermodynamic Laws

b) Detail Contents:

- I. Basic properties State, Process, Path, Cycle Definitions Pure Substance.
- II. Energy Zeroth Law Energy transfer and first law of thermodynamics Energy analysis of control mass and control volume system Second law of thermodynamics Entropy and Exergy Analysis Third Law of Thermodynamics

III. Power Cycles

III.	Ideal Cycles - Carnot Cycle — Gas Power Cycle — Vapour Power Cycles — Analysis of
	Otto Cycle, Diesel Cycle, Brayton Cycle, Rankine Cycle— Mixture of Gases and vap

CO-PO MAPPING

No	Course Outcome	PROGRAM OUTCOMES (PO)											
1.01		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Understand the Zeroth, First, Second and Third Laws of thermodynamics, and use the laws of thermodynamics to solve a variety of problems, such as the expansion of gases and the efficiency of heat engines	3	3										3
CO2	Analyse the efficiency and properties of thermodynamic cycles for heat engines, refrigerators, heat pumps and other important mechanical devices.	3	3										
CO3	Distinguish the interfaces between the ideal thermodynamic cycles and real cycles used in various applications.	1	1										

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING							
Mapping	Level of Matching	Justification					
CO1-PO1	3	Developing solutions for thermodynamic law problems will provide knowledge from physics and mathematics.					
CO1-PO2	3	Students will be able to analyse basic to complex level problems on thermodynamic laws.					
CO1-PO12	3	Thermodynamic laws will be ingratiated into the students' knowledge profile.					
CO2-PO1	3	Developing solutions for efficiency in various thermodynamic cycle problems will provide knowledge from physics and mathematics.					
CO2-PO2	3	Students will be able to analyse basic to complex level problemson various ideal thermodynamics cycles.					
CO3-PO1	1	Students will have basic knowledge of the dissimilarities between the ideal and the real thermodynamic cycles.					
CO3-PO2	1	Students will also be able to analyse basic problems on real cycles.					
TEACHING L	EARNING STR	ATEGY					
Teaching and L	earning Activities	Engagement (hours)					
Face-to-Face Le	earning						
		42					
Self-Directed L	earning	75					
Formal Assessment		5.5					
Total 122.5							
TEACHING M	IETHODOLOGY	Y					
Class Lecture, F	op quiz, Case stu	dy, Problem solving					

COURSE SCHEDULE

2

1

3

Assignment

Final Exam, CT

Final Exam, CT

Final Exam, CT, MID

Exam

Week	Τα	ppic	СТ	Rema	rks
Class 1 –	6 In Ba	troduction and Basic Concepts sic properties — State, Process, Path, C Definitions — Pure Substance.	ycle		
Class 7 –	27 Th En fir of Se Ex Th	nermodynamic Laws ergy — Zeroth Law — Energy transfer st law of thermodynamics — Energy ana control mass and control volume system cond law of thermodynamics — Entropy ergy Analysis — Third Law termodynamics	and lysis n — and of		
Class 28 -	- 42 Po Cy Ot Ra	wer Cycles eal Cycles - Carnot Cycle — Gas Po ycle — Vapour Power Cycles — Analys to Cycle, Diesel Cycle, Brayton Cy nkine Cycle— Mixture of Gases and vapo	ower is of ycle, purs		
ASSESSM	IENT STR	ATEGY			
	COs	Assessment Method (Class Assessment	(100%)	Remarks	

20

80

80

100

REFERENCE BOOKS

- 1. Çengel, YunusA.;Boles, Michael A Thermodynamics : an engineering approach
- 2. Michael J. Moran, Howard N. Shapiro-Fundamentals of engineering thermodynamics_ SI version-Wiley
- 3. Thermal-Engineering-by-Mahesh-Rathore

Spring Semester L-1, T-I

COURSE INFORMATION Course Code Lecture Contact Hours **ME 104** :3.00 Course Title **Thermodynamics Sessional** Credit Hours : 1.50 **PRE-REQUISITE** ME 103 **CURRICULUM STRUCTURE** Outcome Based Education (OBE) SYNOPSIS/RATIONALE Thermodynamics sessional deals with the relations between heat and other forms of energy such as mechanical, electrical, or chemical energy. Given that mechanical engineering systems are based on energy exchange, students will be well familiar withrelationships that determine these exchanges. In this course, students will learn and apply a range of thermodynamic laws and principles so that they can analyze a given thermodynamic problem (such as the combustion of fuels to release heat and energy, and the translation of this release of energy into movement) and discuss operational features of various thermodynamic systems and components.

OBJECTIVE

1. Students will be able to apply thermodynamic laws and principles to the analysis of processes, cycles and thermodynamic hardware

2. They will explain and investigate the laws and principles of thermodynamics and use them to solve problems.

3. They can solve thermodynamics problems by appraising given information, determining which conceptstoapply, and then provide and verify an appropriate solution

4. They can communicate results through reports, sketching, and modelling

LEAR	NING OUTCOMES & GENERIC S	SKILLS					
No.	Course Outcome	Corresponding PO	Bloom's Taxonomy	СР	CA	KP	Assess ment Method s
CO1	Apply thermodynamic laws and principles to the analysis of processes, cycles and thermodynamic hardware	1	Р3			1	R, Q, LT
CO2	Analyze and investigate the laws and principles of thermodynamics and use them to solve problems.	2	C4			1	R, Q, LT
CO3	Solve thermodynamics problems by appraising given information, determining which concepts to apply, and then provide and verify an appropriate solution	3	C5			5	R, Q, LT
CO4	Compare results through reports, sketching, and modeling	4	P2			8	R, Q, LT

 $(CP-\ Complex\ Problems,\ CA-\ Complex\ Activities,\ KP-\ Knowledge\ Profile,\ LT-\ Lab\ Test,\ PR-Project\ ;\ Q-\ Quiz;\ ASG-\ Assignment;\ Pr-\ Presentation;\ R-\ Report;\ F-\ Final\ Exam$

COURSE CONTENT

Experiments:

- 1) (a) Determination of flash point of liquid fuel
- (b) Study of sling psychometry
- 2) Viscosity test of liquid substance
- 3) Study of Vapor Compression Refrigeration Cycle (refrigeration and air conditioning unit)
- 4) Study and calibration of pressure gauge by dead weight tester
- 5) (a)Concept of pressure and pressure sensor behavior
 - (b) Study of different Speed Measuring devices
- 6) Study of Split and window Air Conditioner
- 7) Study of Compressor, condenser, evaporator
- 8) Study of IC Engine
- 9) Study of industrial boilers
- 10) Study of Mechanical Heat Pump

CO-PO MAPPING

No	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
110.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Apply thermodynamic laws and principles to the analysis of processes, cycles and thermodynamic hardware	3											
CO2	Analyze and investigate the laws and principles of thermodynamics and use them to solve problems.		3										
CO3	Solve thermodynamics problems by appraising given information,			3									

	deter and t appro	mining which cond then provide and ve opriate solution	cepts apply, erify an	epts apply, ify an												
CO4	CO4 Compare results through reports, sketching, and modelling 2															
Justifica	Justification for CO-PO mapping:															
Mappin	g	Corresponding Level of matching	Justification													
CO1-PO1 3		3	In order to identify the basics of thermodynamic tools and equipment, a fundamental knowledge of engineering would be required.													
CO2-PC	02	3	In order to pe be necessary.	erfor	m th	ie ex	peri	me	nts,	ana	lyzir	ng th	e pro	blem	would	
CO3-PC)3	3	In order to so solution is ne	olve ede	the t d to	hern deve	nody lop.	ynai	nics	s pro	oble	ms, t	he pr	ocess	of	
CO4-PC)4	2	For performing reports is needed.	ng e ded	xper in th	imer nis la	nts, abor	data ator	i an 'y.	alys	is ar	nd co	mpar	ison o	of	
TEACH	IING	LEARNING STR	ATEGY													
Teachin	g and	Learning Activitie	s									Eng	agem	ent (h	ours)	
Face-to-	Face	Learning														
]	Lectur	e												14		
]	Practio	cal												28		
Total													42	2		
Self-Dir	rected	Learning														
Preparation of Lab Reports							-	10								
]]	Prepar	ration forthe Lab T	est										-	10		
I	Prepar	ation for presentati	on									5				
	Prepa	aration of Quiz										10				
	Enga	rojects							20							

Formal Assessment	
Continuous Assessment	14
Final Quiz	1
Total	112

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE SCHEDULE

Week-1	Expt-01: (a) Determination of flash point of liquid fuel
	(b) Study of sling psychometry
Week-2	Expt-02: Viscosity test of liquid substance
Week-3	Expt-03: Study of Vapour Compression Refrigeration Cycle (refrigeration and air conditioning unit)
Week-4	Expt-04: Study and calibration of pressure gauge by dead weight tester
Week-5	Expt-05: (a)Concept of pressure and pressure sensor behaviour
	(b) Study of different Speed Measuring devices
Week-6	Expt-06: Study of Split and window Air Conditioner
Week-7	Expt-07: Study of Compressor, condenser, evaporator
Week-8	Expt-08: Study of IC Engine
Week-9	Expt-09: Study of industrial boiler
Week-10	Expt-10: Study of Mechanical Heat Pump
Week-11	Expt-11: Revision Class
Week-12	Final Lab Report Submission
Week-13	Viva

Week-14	Quiz Test									
	Con	nponent	Grading							
Continuous Assessment (60%)		Lab participation and Report	30%							
		Labtest-1, Labtest-2	30%							
	La	b Quiz	40%							
	Tota	al Marks	100%							
REFERENCE BOOKS										
1. Thermodynamics: An Engineering Approach - Yunus A. Cengel, Michael A. Boles										
2. Fundamentals of Engineering Thermodynamics- Michael J. Moran & Howard N. Shapiro.										
3. Fundamentals of Thermodynamics – R E Sonntag, C. Borgnakke, G J. Van Wylen.										

Spring Semester L-1, T-1

COURSE INFORM	IATION		
Course Code Course Title	ME 161 Introduction to Mechanical Engineering	Lecture Contact Hours Credit Hours	: 2.00 : 2.00
PRE-REQUISITE			
N/A			
CURRICULUM S	TRUCTURE		
Outcome Based Ed	ucation (OBE)		

SYNOPSIS/RATIONALE

To introduce the students to different branches of mechanical engineering and their relation to various disciplines of natural science like physics, mathematics etc.

OBJECTIVE

1. Introduction to various energy sources available in the world

2. Introduction to internal combustion engines, gas turbines and their applications

3. Brief introduction to psychrometry, refrigeration and air-conditioning

4. Brief introduction to fluid machinery

5. Brief introduction to automobiles, robotics, electromechanical systems and relevant cutting-

edge branches

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Identify the core areas of mechanical engineering	1	C1	2			Q, F
CO2	Demonstrate introductory knowledge of various engines and processes like internal combustion engines, turbines, pumps, psychrometry etc. as well as advanced areas like automobile technology, robotics, MEMS etc.	1	C1, C2	2			Q, F
CO3	Employ engineering measurements, units, and conversions to solve basic problems of mechanical engineering discipline	1	C1, C2	2,3			Q, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- 1. Various Energy Sources
- 2. Major Mechanical Applications
- 3. Fluid Machinery
- 4. Steam Generators
- 5. Electromechanical Systems
- 6. Machien Elements and Materials for Engineers

b. Detail Contents

1. Scope of mechanical engineering; Study of sources of energy conventional and renewable;

2. Major mechanical applications: Automobiles and I.C. engines; Gas turbine and jet engines

3. Fluid machinery-Fan, blower, compressor, pump

4. Steam generators and turbines; Refrigeration and air-conditioning systems

5. Electromechanical systems- Robotics, Mechatronics, MEMS, Bioengineering

6. Machine elements: Gears, bearings, spring, beam, column; Materials for mechanical engineers

(Classes will be preferably conducted in lab)

CO-PO MAPPING

No	Course Outcome		PROGRAM OUTCOMES (PO)										
110.			2	3	4	5	6	7	8	9	10	11	12
CO1	Identify the core areas of mechanical engineering	1											
CO2	Demonstrate introductory knowledge of various engines and processes like internal combustion engines, turbines, pumps, psychrometry etc. as well as advanced areas like automobile technology, robotics, MEMS etc.	3											

CO3 Employ engineering measurements, units, and conversions to solve basic problems of mechanical engineering discipline 3 3 (Numerical method used for mapping which indicates 3 as high 2 as medium and 1 as low															
(Numer matchin	(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)														
JUSTIFICATION FOR CO-PO MAPPING															
Mapping Justification															
CO1-PO11Students will have basic knowledge of various core areas mechanical engineering discipline									as of						
CO2-PO13Students will learn to systematically formulate various fundamental and applied concepts of engineering devices based on pure science.								ees							
CO3-P	01	3	Students w simple eng	ill le	earn ring	to p pro	erfo bler	orm ns.	ba	sic	calcu	ulati	ions (to solv	ve
TEAC	HING L	EARNING STR	ATEGY												
Teaching and Learning Activities Engagement (ho								iours)							
Face-to	-Face Le	earning													
														42	
Self-Di	rected L	earning											,	75	
Formal Assessment 5.5								5.5							

Total

TEACHING METHODOLOGY

Class Lecture, Pop quiz, Case study, Problem solving

122.5

COURSE SCHEDU	J LE									
Lecture	СТ									
Class 1 – 4	Sc en	ope of mechanical engineer ergy conventional and renev	ing; Study vable	of sources of	f CT 1					
Class 5 – 12	Au pri dia tec Ag tur inc	itomobile and Hybrid Techr nciple of IC (both SI and C agram, cycle diagram, releva chnology – Various hybrid v oplications, Gas Turbine and bine components, Applications	d er							
Class 13 - 18	13 - 18Refrigeration and Psychrometry –Vapor compression and Absorption refrigeration, COP, Cycle, Psychrometric chart, Basic applications of psychrometric chart.CT 02									
Class 19 - 22	Ste Ge me	eam generators and turb ears, bearings, spring, bear echanical engineers	nts: CT 03 and for Mid Term							
Class 23 - 28	Flu cer sul	uid Machines – Various typ ntrifugal pump, pump serie bmersible pump, MEMS, N	bes of pum s and para EMS, PLC	p, Operation llel connection introduction	n of jon, 1					
ASSESSMENT ST	RATE	GY								
	COs	Assessment Method	(100%)	Remarks						
		Class Assessmen	t							
	1	Assignment	20							
	2	Assignment	20							
		Exam								
	1	Final Exam, CT	80							
3 Final Exam, CT 80										
REFERENCE BOOKS										
1. A Text Book of T	1. A Text Book of Thermal Engineering - R S Khurmi& J K Gupta									
2. Heat Engines – D.	2. Heat Engines – D. A. Low									
3. Thermal Engineer	ing- Ma	ahesh M Rathor								

Spring Semester L-1, T-I

COURSE INF	ORMATION		
Course Code	Shop 162	LectureContact Hours	: 3.00
Course Title	Workshop Technology Sessional	Credit Hours	: 1.50
PRE-REQUIS	SITE		

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To help the students to explore various welding techniques and put theory into practice. Our mission is to expose students to the construction of different mechanical machines and analyze their performance. This course is targeted to verify the working principle of types of welding, casting, molding and also to gain knowledge of different manufacturing parts from lathe, drilling, milling and drilling machine etc. and relate them with their theoretical knowledge.

OBJECTIVE

1. The student will be able to use different manufacturing (machining, welding, foundry, sheet metal working, etc.) processes required to manufacture a product from the raw materials.

2. He will be able to use different measuring, marking, cutting tools used in workshops.

3. He will be aware of safety precautions while working in a workshop.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Correspondin g PO	Bloom's Taxonomy	СР	CA	KP	Assessmen t Methods
CO1	Be able to identify the basics of tools and equipment used in machining, welding, casting and molding.	1	Р3			1	R, Q, LT
CO2	Be able to compare different types of manufacturing processes and select proper fabrication tools for specific machining processes.	2, 5	P1, P3			6	R, Q, LT

CO3	Find out about the importance of general safety precautions on different shop floors	1	C4		1	R, Q, LT
CO4	Develop practical skills by performing the experiments in different sections of workshops for safety and applying later in society.	6	Р3		7	R, Q, LT

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, LT – Lab Test, PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Experiments:

- 1) Design and makingpatterns for casting
- 2) Mold making, casting and assembly of final project
- 3) Study of electric arc welding
- 4) Study of Resistance Welding/Spot Welding
- 5) Study of Welding joints and welding positions
- 6) Study of Gas Welding/cutting
- 7) Study of TIG and MIG Welding
- 8) Manufacturing machine components by using a Lathe machine
- 9) Manufacturing machine components by using a Shaper machine
- 10) Manufacturingmachinecomponents by using a Milling Machine
- 11) Manufacturingmachinecomponents by using a Drilling Machine

(CO-PO N	IAPPING												
	No	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
	110.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
	CO1	3												
	CO2 Be able to compare different types of welding and machining processes and select proper cutting tools for specific machining processes.			2			3							
	CO3	Find out about the importance of general safety precautions on differentshop floors	3											
	CO4	Develop practical skills by performing the experiments in different sections of workshops for safety and applying later in society.						2						

Justification	Justification for CO-PO mapping:											
Mapping	Corresponding Level of matching	Justifications										
CO1-PO1	3	In order to identify the basics of tools and equipment, a fundamental knowledge of engineering would be required.										
CO2-PO2	2	In order to perform the experiments, the different manufacturing processesneed to understand and analyze.										
CO2-PO5	3	In order to perform the experiments, knowledge selecting manufacturing tools used in modern industry is required.										
CO3-PO1	3	For performing the experiments, safety precautions are very essential in this laboratory.										
CO4-PO6	2	Students will acquire knowledge of how to select and apply										

	appropriate techniques, resources, and modern engineering tools later in society.									
TEACHING LEARNING STRATEGY										
Teaching an	d Learning Activi	ies		Engage	ement (hours)					
Face-to-Face Learning										
Lect	Lecture									
Prac	tical				28					
				Total	42					
Self-Directe	d Learning									
Prep	paration of Lab Rej	ports			10					
Prep	aration forthe Lab	Test			10					
Pre	paration fora prese	entation			5					
Pre	paration of Quiz				10					
Eng	gagement in Group	Projects			20					
Formal Asse	essment									
Con	tinuous Assessme	ıt			14					
Fina	l Quiz				1					
Total					112					

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE	SCHEDULE
Week-1	Expt-01: Design and makingpatterns for casting
Week-2	Expt-02: Mold making, casting and assembly of final project
Week-3	Expt-03: Study of electric arc welding
Week-4	Expt-04: Study of Resistance Welding/Spot Welding
Week-5	Expt-05: Study of Welding joints and welding positions
Week-6	Expt-06: Study of Gas Welding/cutting

Week-7	Ex]	Expt-07: Study of TIG and MIG Welding							
Week-8	Ex	Expt-08: Manufacturing machine components by using a Lathe machine							
Week-9	Ex	Expt-09: Manufacturing machine components by using a Shaper machine							
Week-10	Ex	Expt-10: Manufacturing machine components by using a Milling Machine							
Week-11	Exj	Expt-11: Manufacturing machine components by using a Drilling Machine							
Week-12	Fin	al Lab Report Submission							
Week-13	Viv	va							
Week-14	Qu	iz Test							
	<u>.</u>	Component	Grading						
Continuo	us	Lab participation and Report	30%						
(60%)		Labtest-1, Labtest-2	30%						
		Lab Quiz	40%						
		Total Marks	100%						
REFERENCE BOOKS									
1. Machine	1. Machine Shop Practice – James Anderson, W. A. Chapman.								
2. Callister	W.	D., Material Science & Engineer	ing, John Wiley & Sons.						

Fall Semester L-1, T-II

COURSE INFORMATION						
Course Code	ME 193	Lecture Contact Hours	: 3.00			
Course Title	Engineering Materials	Credit Hours	: 3.00			

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course introduces various engineering materials including metals, composites, plastics, adhesives and recognizing the process used to construct objects from these materials and the external factors that can change the effectiveness of these materials. The course aims to equip the students with basic tools and methodologies for carrying out materials for engineering systems.

OBJECTIVE

1. This course introduces various engineering materials including metals, composites, plastics, adhesives and recognizing the process used to construct objects from these materials and the external factors that can change the effectiveness of these materials.

2. The course aims to equip students with basic tools and methodologies for carrying out materials for engineering systems.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcomes	Corresponding PO	Bloom's Taxono my	KP	СР	CA	Assessment Methods
CO1	Comprehensive, theory- based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline.	1,7	C2	1,4,7			Q, ASG, F
CO2	In-depth understanding of specialist bodies of knowledge within the engineering discipline.	1,2	C2	2,3	1		Q, ASG, F

CO3	Fluent application of engineering techniques, tools and resources.	3,6	C6	4,6	1,2	Q, F, CS
CO4	Analysis engineering materials in terms of their basic mechanical properties.	1,2	C4	4	1	Q, F, CS

CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

Concept of malleability, ductility, toughness, fatigue resistance and other properties; Mechanical

and non-destructive tests of metals; Crystal structure of metals, Pig iron; Cast iron; Steels; Plain

carbon and different types of allow steels; Bearing metals; Light alloys; Common metals and their

alloys; Phase diagram including the Fe-FeC equilibrium diagram; Types of heat treatment; Case

carburizing and nitriding.

b. Detail Contents:

Concept of malleability, ductility, toughness, fatigue resistance and other properties; Mechanical and non-destructive tests of metals; Crystal structure of metals, Pig iron: production and uses; Cast iron: production, types, uses and effects of impurities; Steels: Bessemer and open-hearth steels, production and uses; Plain carbon and different types of allow steels; Bearing metals; Light alloys; Common metals and their alloys; Phase diagram including the Fe-FeC equilibrium diagram; Types of heat treatment; Case carburizing and nitriding.

CO-PO MAPPING

No.	Course Outcome	PROGRAM OUTCOMES (PO)											
		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Comprehensive, theory-based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering	3						2					

	discipline.								
CO2	In-depth understanding of specialist bodies of knowledge within the engineering discipline.	3	3						
CO3	Fluent application of engineering techniques, tools and resources.			2		1			
CO4	Analysis engineering materials in terms of their basic mechanical properties.	3	3						

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level of Matching	Justification
CO1-PO1	3	Students will be able to understand comprehensive, theory- based understanding of the underpinning natural and physical sciences
CO1-PO7	2	Application of engineering fundamentals applicable to the engineering discipline
CO2-PO1	3	Students can understand specialist bodies of knowledge to develop solutions of related case studies
CO2-PO2	3	Students will have knowledge of special bodies and will observe how this knowledge relates to engineering
СО3-РО3	2	Students will be apt in the application of engineering techniques, tools and resources
CO3-PO6	1	Students will have knowledge of application of engineering techniques, tools and resources and will observe how this knowledge relates to engineering
CO4-PO1	3	Students will be able to identify engineering materials

CO4-PO2	3	Students can apply properties of e learn how to utilise them	ngineering materials and
TEACHING LI	EARNING STRAT	EGY	
Teaching an	nd Learning Activ	ities	Engagement (hours)
Face-to-Fac	ce Learning		
			42
Self-Direct	ed Learning		75
Formal Ass	sessment		5.5
Total			122.5
TEACHIN	G METHODOL	OGY	

Class Lecture, Pop quiz, Case study, Problem solving

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
Class 1-6	Concept of malleability, ductility, toughness, fatigue resistance and other properties	CT 01	
Class 7-12	Mechanical and non-destructive tests of metals; Crystal structure of metals, Pig iron: production and uses	CT 02	
Class 13-21	Cast iron: production, types, uses and effects of impurities; Steels: Bessemer and open-hearth steels, production and uses; Plain carbon and different types of alloy steels	CT 03	
Class 22-27	Bearing metals; Light alloys; Common metals and their alloys	MT	
Class 28-36	Phase diagram including the Fe-FeC equilibrium diagram	MT	
Class 37-42	Types of heat treatment; Case carburizing and nitriding, Introduction to composite materials		
ASSESSMENT	STRATEGY		

COs	Assessment Method	(100%)	Remarks
		Class Assessment	
1	СТ	20	
2	СТ	30	
3	СТ	20	
4	СТ	30	
		Exam	
1	MID, Final	80	
	Exam		
2	MID, Final	70	
	Exam		
3	MID, Final	80	
	Exam		
4	Final Exam	70	

REFERENCE BOOKS

1. Chemistry of Engineering Materials (4th edition) – Robert B. Leighou, Publisher – Mc Graw-Hill Inc.

2. Introduction to Physical Metallurgy (2nd edition) Sidney H Avner, Publisher –Tata Mc Graw – Hill Edition.

3. Engineering Metallurgy (Part I & II) (6th edition) – Raymond A. Huggins, Publisher – Viva Books Private Ltd.

4. Materials Science and Engineering: An Introduction – W D Callister, Jr. Publisher – John Wiley and Sons, Inc (4th edition) 1997.

5. Introduction to Materials Science for Engineering – Shackleford.

6. Introduction to Physical Metallurgy – S F Avner, Publisher – Mc Graw Hill (2nd edition).

7. Physical Metallurgy for Engineers – D S Clarke and W B Verney.

Fall Semester L-1, T-II

COU	RSE INF	ORMATION								
Course	Code	ME 194		Lec	tureCo	ntact H	Hours	3.00		
Course	Title	Engineering Materia	Cre	dit Hou	ırs		1.50			
PRE-	REQUIS	SITE								
ME 1	93									
CURRICULUM STRUCTURE										
Outcome Based Education (OBE)										
SYNC	OPSIS/R	ATIONALE								
Introd diagra	Introduction to metallographic and Metallographic sample specimen preparation, Study of Phase diagrams, Microstudy of steel, Heat treatment of steels, Micro study of cast irons.									
OBJE	ECTIVE									
1. To	develop a	an understanding among	g students about t	he basic con	cepts o	f Meta	allic M	laterials.		
2. То	provide i	nitial Training in the M	etallurgical Micr	oscope.						
3. The	e course	aims to develop the ba	sic concepts of s	study of pha	se diag	rams a	and m	nicro study of		
cast ir	on.									
LEAR	RNING O	UTCOMES & GENERI	CSKILLS							
					-					
No.	C	Course Outcome	Correspondin g PO	Bloom's Taxonomy	СР	CA	KP	Assessment Methods		
	Explain	the differences in the								
CO1	enginee	ring materials based		P1			1	R, Q, LT		
	upon bo compos	nd type, structure, ition, and processing.	1							
	Describ	e the basic structures								
CO2	and repo	eat units for common		P2			3	R, Q, LT		
	distribu	tion of molecular	2							

	weights, degree of polymerization, percent crystallinity, and glass transition temperature to properties in service.					
CO3	Apply ethical principles, engineering codes of ethics, and professional responsibilities in the selection of materials in engineering design.	5	Р3		6	R, Q, LT
CO4	Use binary phase diagrams to predict microstructures and also to understand precipitation hardening.	5	Р3		6	R, Q, LT

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, LT – Lab Test, PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Experiments:

- 1. Introduction to metallographicsample specimen preparation
- 2. Study of phase diagrams
- 3. Microstructure study of Steels
- 4. Heat Treatment of steel-1
- 5. Heat Treatments of steel-2
- 6. Microstructure study of cast irons -1
- 7. Microstructure study of cast irons-2
- 8. Testing of magnetic particles
- 9. Experimental study of the laser beam cutting on acrylic sheet

CO-PO MAPPING

No.	Course Learning Outcome		PROGRAM OUTCOMES (PO)										
			2	3	4	5	6	7	8	9	10	11	12
CO1	Explain the differences in the mechanical behaviour of engineering materials based upon	3											

	bond type, structure, composition, and processing.							
CO2	Describe the basic structures and repeat units for common thermoplastics and relate the distribution of molecular weights, degree of polymerization, percentcrystallinity, and glass transition temperature to properties in service.	2						
CO3	Apply ethical principles, engineering codes of ethics, and professional responsibilities in the selection of materials in engineering design.			3				
CO4	Use binary phase diagrams to predict microstructures and also to understand precipitation hardening.			3				

Justification	for CO-PO mapp	ing:
Mapping	Corresponding Level of matching	Justification
CO1-PO1	3	In order to know the mechanical properties of material, the sound knowledge of material structure is important.
CO2-PO2	2	In order to describe basic structures and composition of materials, knowledge of identification and formulation of engineering systems would be required
CO3-PO5	3	In order to apply ethical principles in material selection, knowledge of application in the proper field is also required.

CO4-PO5 3 Using a specific way to predict and work accordingly by understanding. It requires a good knowledge of application of materials engineering. TEACHING LEARNING STRATEGY							
TEACHING	LEARNING ST	RATEGY					
Teaching and	Learning Activiti	es	Engagement (hours)				
Face-to-Face	Learning						
Lectur	14						
Practio	cal		28				
			Total 42				
Self-Directed	Learning						
Prepar	cation of Lab Repo	orts	10				
Prepar	cation forthe Lab	ſest	10				
Prepa	aration fora preser	itation	5				
Prepa	aration of Quiz		10				
Enga	gement in Group	Projects	20				
Formal Asses	sment						
Contir	nuous Assessment		14				
Final	Quiz		1				
Total			112				

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE	SCHEDUI	Æ						
Week-1	Introducti	on class						
Week-2	Exp 1: Int	roduction to Metallographic Sample S	pecimen Preparation					
Week-3	Exp 2: Stu	Exp 2: Study of phase diagrams.						
Week-4	Exp 3:Microstudy of Steels.							
Week-5	Exp 4:Hea	at Treatment of steel-1						
Week-6	Exp 5: He	Exp 5: Heat Treatments of stel-2						
Week-7	Exp 6: Microstudy of cast irons -1							
Week-8	Exp 7: Microstudy of cast irons-2							
Week-9	Exp 8: Testing of magnetic particles							
Week-10	Exp 9: Experimental study of the laser beam cutting on acrylic sheet							
Week-11	Final Lab Report Submission							
Week-12	Lab Test							
Week-13	Viva							
Week-14	Quiz Tes							
ASSESSI	MENT STR	RATEGY						
		Component	Grading					
		Component	Grading					
Conti	nuous	Lab participation and Report	30%					
Assessme	ent (60%)	Labtest-1, Labtest-2	30%					
	Lab Quiz 40%							
		Total Marks	100%					

REFERENCE BOOKS

1. Chemistry of Engineering Materials (4th edition) – Robert B. Leighou, Publisher – McGraw-Hill Inc.

2. Introduction to Physical Metallurgy (2nd edition) Sidney H Avner, Publisher –Tata McGraw – Hill Edition.

3. Engineering Metallurgy (Part I & II) (6th edition) – Raymond A. Huggins, Publisher – Viva Books Private Ltd.

Spring Semester L-2, T-I

COURSE INFORMATION									
Course Code	ME 205	205 LectureContact Hours							
Course Title	Heat and Mass Transfer	Credit Hours	3.00						
PRE-REQUISITE									
ME-103, Therm	odynamics								
CURRICULU	M STRUCTURE								
Outcome Based Education (OBE)									
SVNOPSIS/RATIONALE									

This course examines the different modes of heat transfer with detailed treatment of each mode. Analysis of different heat transfer devices is carried out and associated mathematical concepts emphasized. Analogy is drawn between heat and mass transfer with the prevalent mathematical models and theories discussed. Applications of the concepts developed in practical cases involving cooling towers, heat exchangers, heat pipes etc. further cement the students' understanding.

OBJECTIVE

- 1. The course provides an introduction to heat and mass transfer and introduces practical applications in industry.
- 2. Familiarize basic tools to design process operations involving heat transfer and mass transfer
- 3. Extensive use of industrial examples and analogies between the various transport mechanisms to encourage lateral thinking.

LEAF	LEARNING OUTCOMES & GENERIC SKILLS										
No.	Course Outcome	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assess ment Method s				
CO1	Students will have a clear understanding of different modes of heat transfer and mass transfer used in engineering systems.	1	C1, C2	1			Q, ASG,F				
CO2	Students will be able to analyzethe performance of various engineering systems like heat exchangers, and various heat transferring surfaces.	1,2	C3, C4	3	1,2		Q, ASG,F				

CO3	Students will have a fundamental understanding of two-phase heat transfer and mass transfer and their applications in engineering systems.	1	C1, C2	2, 3		Q, ASG,F
CO4	Students will be able to analyzethe performance of various engineering systems using two phase heat transfer.	1,2	C3, C4	3, 4	1,2	Q, ASG,F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

a. Main Contents:

Details of three heat transfer methods (conduction, convection and radiation) and mass transfer.

b. Detail Contents:

Conduction

Basic concepts — Conduction — Fourier's Law of Heat conduction — Concept of Thermal Conductivity — Generalized conduction equation in Cartesian, cylindrical and spherical systems; Steady State Conduction —Heat transfer composite systems — Critical thickness of insulation —Conduction with heat Generation.

Convection

Fundamentals of Convection — Thermal boundary layer & Convective heat transfer coefficients —Convection correlations through Dimensional analysis; Laminar flow over a flat plate — Turbulent flow over a flat plate — Flow over cylinders — Internal flow through pipes — annular spaces —Natural convection in vertical - inclined and horizontal surface.

Radiation

Radiation heat transfer — Thermal radiation — Laws of radiation — Black body concepts— Emissive power — Radiation shape factor — Gray bodies — Radiation shields

MASS TRANSFER

Basic Concepts – Diffusion Mass Transfer – Fick's Law of Diffusion – Steady state Molecular Diffusion – Convective Mass Transfer – Momentum, Heat and Mass Transfer Analogy – Convective Mass Transfer Correlations

CO-PO MAPPING

						PR	206	R A	М		TCO	ME	5 (PO)]
No.		Course Outco	me	1	2	3	4	5	6	7	8	9	10	, 11	12
CO1	Stud unde heat in en	ents will have a cle erstanding of different transfer and mass to agineering systems.	ar ent modes of ransfer used	3											
CO2	Stud perfo syste vario	ents will be able to ormance of various ems like heat excha ous heat transferrin	analyzethe engineering ngers, and g surfaces.	3	3										
CO3	Students will have a fundamental understanding of two-phase heat transfer and mass transfer and their applications in engineering systems.			3											
CO4	Students will be able to analyzethe performance of various engineering systems using two phase heat transfer.			3	3										
Justifica	ation	for CO-PO mappi	ing:												
Mappin	g	Corresponding Level of matching		Justifications											
CO1-PC	01	3	Understandin require know fundamentals	ng di vledg s	ffere ge of	ent n natu	node Iral	es o scie	f he ence	at a and	nd n d eng	nass ginee	transf ering	er wi	11
CO2-PC)1	3	To analysethe heat exchang engineering f	e pe ger, k fund	rforn mow	nanc ledg ntals	e of ge of wil	f va f ma ll be	riou athe rec	is er mat quire	ngine tics, t ed.	eerin natui	g syst ral sci	tems l ience	ike and
CO2-PC	02	3	Students will transferring s	l be a surfa	able ces	to ar	naly	se h	leat	exc	hang	gers a	and va	arious	s heat
CO3-PC	01	3	To understan applications natural scien	id tw in er ce ai	vo-pł ngine nd er	nase erin ngine	hea g sy eerii	t tra vster ng f	nsfe ns, und	er a kno ame	nd m wleo ental	nass t dge o s wil	transf of mat	er and thema require	l their tics, ed.
CO4-PC)1	3	3 To analyze the performance of various engineering systems using two phase heat transfer, knowledge of mathematics, natural science and engineering fundamentals will be required.							using					
CO4-PO2 3 Students will be able to analyze the performance of various engineering systems using two phase heat transfer using the principles of mathematics, natural sciences and engineering sciences.							rious ig the ering	first							

TEACHING LEARNING STRATEGY	TEACHING LEARNING STRATEGY					
Teaching and Learning Activities	Engagement (hours)					
Face-to-Face Learning						
	42					
Self-Directed Learning	75					
Formal Assessment	5.5					
Total	122.5					
TEACHING METHODOLOGY						
Class Lecture, Pop quiz, Case study, Problem solving						

COURSE SCH	COURSE SCHEDULE									
Week	Торіс	СТ	Remarks							
Lec 1-10	Basic concepts — Conduction — Fourier's Law of Heat conduction — Concept of Thermal Conductivity — Generalized conduction equation in Cartesian, cylindrical and spherical systems; Steady State Conduction —Heat transfer composite systems — Critical thickness of insulation — Conduction with heat Generation.	CT-1	Lecture 01-10 Theory: 60% Problem: 30% Practical Application:10%							
			CT 01 will cover these sections.							
Lec 10-30	Fundamentals of Convection — Thermal boundary layer & Convective heat transfer coefficients —Convection correlations through Dimensional analysis; Laminar flow over a flat plate — Turbulent flow over a flat plate — Flow over cylinders — Internal flow through pipes — annular spaces —Natural convection in vertical - inclined and horizontal surface.	CT-2	Lecture 10-30 Theory: 30% Problem: 50% Practical Application: 20% CT02 / Mid-Term will cover this section							

Lec 30-	Radiation heat transfer — Thermal radiation — Laws of radiation — Black body concepts—Emissive power — Radiation shape factor — Gray bodies — Radiation shields 6	Mid Term	Lecture 30-36 Theory: 40% Problem: 50% Practical Application: 10% CT03 will cover this section
Lec 36-	Basic Concepts – Diffusion Mass Transfer – Fick's Law of Diffusion – Steady state Molecular Diffusion – Convective Mass Transfer – Momentum, Heat and Mass Transfer Analogy – Convective Mass Transfer Correlations	CT-3	Lecture 36-42 Theory: 40% Problem: 40% Practical Application: 20%

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessment		
CO 1		20	
CO 2	Class Observations/Assignments	20	
CO 3	Class Observations/Assignments	20	
CO 4		20	
	Exam		
CO 1		80	
CO 2	CT/Mid/Einel Exem	80	
CO 3	C1/Mid/Final Exam	80	
CO 4		80	

REFERENCE BOOKS

1. Heat and Mass Transfer, Fundamentals & Applications – Yunus A. Cengel, Afshin J. Ghajar.

2. Fundamental of Heat & Mass Transfer – Frank P. Incropera.

3. Heat Transfer – J. P. Holman

REFERENCE SITE

Online Content:

Heat Transfer: Dr. John Biddle's Lecture Series

(https://www.youtube.com/playlist?list=PLZOZfX_TaWAE6nTX50dJl0Jia8iQTIhrG)

Spring Semester L-2, T-I

COURSE INFORMATION										
Course Code ME-206				Leo	Lecture Contact Hours			3.00		
Course Title Heat Transfer S		essional	Cre	Credit Hours			1.50			
PRE-REQUISITE										
ME 205										
CURRICULUM STRUCTURE										
Outcome Based Education (OBE)										
SYNOPSIS/RATIONALE										
This	course enables	students to apply	y the understan	ding of he	at tran	sfer m	lechan	isms such as		
condu	iction, convecti	on and radiation	for understandir	ng the perfe	ormanc	e of v	arious	heat transfer		
equip	ment such as	heat exchangers,	condensers, bo	oilers, evap	orators	etc.	used	in almost all		
indust	tries.									
OBJI	ECTIVE									
1. Tł	ne course prov	vides an introduc	tion to heat a	nd mass ti	ansfer	and i	ntrodu	ices practical		
applic	cations in indust	try.						I		
2. Bas	sic tools to desig	gn process operation	ons involving he	at transfer a	nd mas	s trans	fer are	covered.		
LEAI	RNING OUTC	OMES & GENE	RIC SKILLS							
No.	Course Outcome	Correspondin	Bloom's	CP	CA	KP	Assessment			
			g PO	Taxonomy	/			wiethous		
	Apply princip	oles of heat and	1							
CO1	mass transfer	to basic		P3			3	R, Q, LT		
	engineering sy	ystems.								
	Analyze heat	transfer by	1							
CO2	conduction, co	onvection and		C4			4	R, Q, LT		
	radiation.									
	Explain analy	rtical and	4							
CO2	numerical me	thods commonly		$\mathbf{D}1$ $\mathbf{C}4$			8	R, Q, LT		
003	used to analy	ze IWO-		P1, C4						
	conduction	steauy state fieat								
	Analyze and a	calculate heat and	2.3							
CO4	mass transfer	in complex	2,5	~ (_	R. O. LT		
	systems invol	ving several heat		C4			5	,		
	transfer mech	anisms								
(CP- Complex Problems CA-Complex Activities KD Knowledge Profile T Test · DD Project ·										
(Cr-Complex Froblems, CA-Complex Activities, KP-Knowledge Prome, 1 – Test; PK – Project;										

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)
COURSE CONTENT

- 1. Forced convection heat transfer in a circular tube.
- 2. Forced convection over a flat plate
- 3. Study of heat exchanger
- 4. Study of forced convection of fin/flat plate/pipe bundle
- 5. Study of free convection of fin/flat plate/pipe bundle.
- 6. Determination of thermal conductivity of a metal by steady state method
- 7. Study of thermal radiation unit
- 8. (a) Inverse square law for light radiation.
 - (b) Lamberts cosine law for light
 - (c) Lamberts law of absorption for light.
- 9. Study of heat transfer by radiation and convection
- 10. Determination of thermal contact conductance

		1		Г		CD	A N /		ITC			<u>))</u>	
No.	Course Learning Outcome	1	2	Р 3	4	GK 5	AN 6	7	8	9	10	<i>1</i>)	12
CO1	Apply principles of heat and mass transfer to basic engineering systems.	3											
CO2	Analyze heat transfer by conduction, convection and radiation.	3											
CO3	Describe analytical and numerical methods commonly used to analyze two-dimensional, steady state heat conduction.				2								
CO4	Analyze and calculate heat and mass transfer in complex systems involving several heat transfer mechanisms		3	2									

CO-PO MAPPING

Justification for CO-PO mapping:									
Mapping	Corresponding Level of matching	Justification							
CO1PO1	3	In order to apply principles of heat and mass transfer to basic engineering systems, engineering knowledge is required.							
CO2PO1	3	Engineering knowledge is a must in order to by conduction, convection and radiation.	to analyse heat transfer						
CO3PO4	2	Investigations are required to describe anal methods used to analyse heat transfer.	ytical and numerical						
CO4PO2	3	In order to analyze heat and mass transfer in problem analysis skills are required.	n complex systems,						
CO4PO3	2	To analyze and calculate heat and mass tra systems involving several heat transfer med development of solutions is required.	nsfer in complex chanisms, design and						
TEACHING	G LEARNING STR	RATEGY							
Teaching and	d Learning Activitie	28	Engagement (hours)						
Face-to-Face Lectu Pract	e Learning ure ical		14 28 Total 42						
Self-Directed	d Learning		10101 42						
Prepa	aration of Lab Repo	rts	10						
Prepa	aration forthe Lab T	est	10						
Prep	paration for present	tation	5						
Eng	agement in Group F	Projects	$\frac{10}{20}$						
Formal Asse	ssment								
Cont	inuous Assessment		14						
Final	Quiz		1						
Total			112						
TEACHING	G METHODOLOG	SY							
Lecture follo Project Base	owed by practical ex d Method	xperiments and discussion, Co-operative and	d Collaborative Method,						
COURSE S	CHEDULE								
Week-1	Introduction and she	ort briefs regarding lab proceedings and exp	eriments						
Week-2	Expt-01: Forced con	nvection heat transfer in a circular tube.							
Week-3	Expt-02: Forced con	nvection over a flat plate							
Week-4	Expt-03: Study of h	eat exchanger							
Week-5	Expt-04: Study of forced convection of fin/flat plate/pipe bundle								

Week-6	Expt-05: Study of free convection of fin/flat plate/pipe bundle.
Week-7	Expt-06: Determination of thermal conductivity of a metal by a steady state method.
Week-8	Expt-07: Study of thermal radiation unit
Week-9	Expt-08:
	(a) Inverse square law for lightradiation.
	(b) Lamberts cosine law for light
	(c) Lamberts law of absorption for light.
Week-10	Expt-09: Study of heat transfer by radiation and convection
Week-11	Expt-10: Determination of thermal contact conductance
Week-12	
Week-13	Viva
Week-14	Lab Quiz

ASSESSMENT STRATEGY

	Component	Grading					
Continuous	Lab participation and Report	30%					
Assessment (60%)	Labtest-1, Labtest-2	30%					
	40%						
	Total Marks						
REFERENCE BOOKS							

1. Fundamental of Heat & Mass Transfer -Incropera.

2. Principles of Heat Transfer –F. Kreith, (7th edition), M. S. Bohn.

3. Heat Transfer –J. P. Holman 7e.

4. Heat and Mass Transfer, Fundamentals & Applications – Yunus A. Cengel, Afshin J. Ghajar.

5. Heat Transfer Laboratory Practice-A.C. Mandal & M.Q. Islam

Fall Semester	L-2, T-II
----------------------	-----------

COURSE INFORMATION									
Cours	se Code	ME 207		Lec	ture C	Contact	Hour	s 3.00	
Cours	Purse Title Heat Transfer Equipment Design Credit Hours 3.00								
PRE-	REQUISITE								
1. MF	1. ME-103 Thermodynamics, 2. ME-205 Heat and Mass Transfer								
CUR	CURRICULUM STRUCTURE								
Outco	Outcome Based Education (OBE)								
SYNC	SYNOPSIS/RATIONALE								
This c	course provides	an introduction	to the essential the	eoretical basis	of he	at trans	sfer ec	luipment	
design	n and its applica	tion to a range of	of problems of rele	evance to prac	tical e	enginee	ring. '	The course	
aims t	to equip students	s with basic tool	s and methodolog	gies for carryin	ng out	heat tr	ansfei	analysis in	
many	engineering dev	vices.							
OBJE	ECTIVE				-	<u> </u>			
a.	Design, insp	ect, maintain an	id operate heat exc	changers and a	analyz	the their	perfo	rmance.	
b.	Carry out he	at exchanger an	alysis for counter	flow. cross fl	ow an	d multi	-pass	heat	
ex	changers and to	apply the relev	ant correction fact	ors.			P		
c.	Choose the o	correct heat excl	hanger for a given	application a	nd its	costing	g in lir	ne with the	
ad	lvantages and di	sadvantages of i	its type and scope	of its applicat	ions.				
d	Determine t	ne cooling perfo	rmance of a range	of heat eych	angerg	and ea	tablic	h insights on	
u.		NTU mothod fo	r haat avahangar	on alveig in ter	mgers	hoot or	naoit		
un	e effectiveness/	IN I U method IC	or neat exchanger a	anarysis in ter	IIIS OI	neat ca	ipacit	y ratios.	
LEAI	RNING OUTC	OMES & GEN	ERIC SKILLS						
							_		
No.	Course (Dutcome	Corresponding	Bloom's	KP	СР	C	Assessment	
			PO	Taxonomy			A	Methods	
	Students will h	ave a clear							
	understanding	of various							
CO1	types of heat the	ansfer	1	C1, C2	1,2			T, ASG, F	
	processes and	associated							
	devices.								
	Students will b	be able to							
000	analyze and se	lect the heat	23	G 2	2.5	1			
CO2	transfer device		2,5	C3	3,5	1		T, ASG, F	
	Students will h	nave a							
	fundamental understanding								
	of interpretation of design								
CO3	parameters, co	st estimation	3,4	C5. C6	5.8	1		T. ASG. F	
	and optimization	on from the		,	-,-	_		, 0, -	
	engineeringpoi	int of view.							
1			1		1			(

CO4	Students will be able to analyze the applications of multiphase heat transfer equipment design.	3	C5,C6	5	1,2		T, F, CS
-----	--	---	-------	---	-----	--	----------

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, CS- Case Study)

COURSE CONTENT

a. Main Contents:

- 1) Concept of thermal system design;
- 2) Heat transfer from finned surface;
- 3) Basic thermal design methods of heat exchangers;
- 4) Fouling of heat exchangers;
- 5) Heat transfer mechanism with change of phase;
- 6) Two phase heat transfer equipment;
- 7) Thermo-electric cooling, direct liquid cooling;
- 8) Thermal systems with internal heat source.

b. Detail Contents:

Concept of thermal system design: Heat transfer requirements: Mechanical design: Design parameters: Materials, cost and economics: Safety and reliability: Choice and availability; Optimization: Cyclic service.

Heat transfer from finned surface: Basic fin design, Types of fins: Fin performance, Efficiency of fins, Equation of heat transfer from fins, Analysis of unsteady heat conduction.

Basic thermal design methods of heat exchangers: Types of heat exchangers; Parallel flow, counter flow, cross flow, shell-and-tube, mixed and unmixed, single and multiple pass, compact heat exchangers: Thermo fluid characteristics: Sizing of heat exchangers. Basic application of nanofluid in heat transfer.

Fouling of heat exchangers: Performance of heat transfer equipment; Log mean temperature difference, Effectiveness-NTU; F correction factor.

Heat transfer mechanism with change of phase: Boiling and condensation;mechanism and heat transfer correlations; Heat Pipe-basic design and operation.

Two phase heat transfer equipment: Boiler, Evaporator, Condenser, Cooling tower.

Thermo-electric cooling, direct liquid cooling.

Thermal systems with internal heat source: Modeling of thermal equipment

CO-PO MAPPING

			PROGRAM OUTCOMES (PO)												
No.		Course Learning C	Outcome	1	2	3	4	5	6	7	8	9	10	1 1	12
CO1	1 Students will have a clear understanding of various types of heat transfer processes and associated devices.			3											
CO2	Stud selec	lents will be able to ct the heat transfer of	analyze and device.		3	3									
CO3 Students will have a fundamental understanding of interpretation of design parameters, cost estimation and optimization from the engineering point of view					3	2									
CO4	Students will be able to analyze the applications of multiphase heat transfer equipment design.					3									
Justific	cation	for CO-PO mapp	ing:												
Маррі	ng	Corresponding Level of matching					Ju	stif	icat	tion					
CO1-P	-PO1 3 The student will learn a parameters that will pre-				tudent will learn about heat transfer requirements and design neters that will provide engineering knowledge.								lesign		
CO2-P	02	3	Students will be able to analyze complex engineering problems related to fin design.						ems						
CO2-PO33They will be able to determine fin performance, Efficiency heat transfer from fins according to requirement.					ncy (of fins,									

CO3-PO3	3	Design solution of heat exchanger by using different system parameters								
CO3-PO4	2	Conduct investigation of the sizing of heat exchangers and fouling of heat exchangers.								
CO4-PO3	3	Students will acquire knowledge of modeling thermal equipment to meet specific requirements.								
TEACHING	LEARNING STI	RATEGY								
Туре	and No.	Activity	Engagemer	Engagement Hour						
Face-to-Fa	ace Learning									
	1	Lecture	40							
	2	Introduction to different manufacturing devices operated in Industry	2							
Self-Direc	ted Learning									
	3	Non face to face learning	75							
Formal A	ssessments									
	4	Class test and Mid-term Exam	2.5							
	5	Final Exam	3							
Т	otal		122.5							
TEACHING	METHODOLOG	GY								
Class lecture,	Assignment, Grou	p discussion for problem solving								
COURSE SC	HEDULE									
Week		Торіс	СТ	Remarks						
Concept of thermal system design: Heat transfer requirements: Mechanical design: Design parameters: Materials, cost and economics: Safety and reliability: Choice and availability; Optimization: Cyclic service.										
3-5	Heat transfer design, Types Efficiency of from fins, An conduction.	r from finned surface: Basic fin of fins: Fin performance, fins, Equation of heat transfer alysis of unsteady heat	sic fin sfer CT 01							
6-8	Basic thern exchangers:	nal design methods of heatMid TermTypes of heat exchangers; ParallelExam								

	flow, counter flow, cross flow, shell-and-tube, mixed and unmixed, single and multiple pass, compact heat exchangers: Thermo fluid characteristics: Sizing of heat exchangers. Basic application of nanofluid in heat transfer.		
9-10	Fouling of heat exchangers: Performance of heat transfer equipment; Log mean temperature difference, Effectiveness-NTU; F correction factor.	CT 02	
11	Heat transfer mechanism with change of phase: Boiling and condensation; mechanism and heat transfer correlations;Heat Pipe-basic design and operation.	CT 03	
12	Two phase heat transfer equipment : Boiler, Evaporator, Condenser, Cooling tower.		
13-14	Thermo-electric cooling, Direct liquid cooling.Direct liquid liquidThermal systems with internal heat source:Modeling of thermal equipment.		

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks				
	Class Assessment						
CO1	Homework/ Assignment	5					
CO2	Homework/ Assignment, Case study of various heat transferring equipment, Class test	10					
CO3	Homework/ Assignment Online content regarding application of two phase heat transfer equipment. Class test, Mid-term.	20					
CO4	Assignment, Case study, Online content.	5					
	Exam						
CO2 CO3 CO4	Final Exam	60					

REFERENCE BOOKS

1. Fundamental of Heat & Mass Transfer-by Incropera.

2. Principles of Heat Transfer – F. Kreith, (7th edition), M. S. Bohn, Publisher – Harper Int. Edition 1999.

3. Heat Transfer – J. P. Holman 7e, Publisher - Mc Graw-Hill Inter. Edition.

4. Heat Transfer: A Basic Approach – OZISIK, Publisher – McGraw-Hill Int. Edition 1985.

5. Advanced Convective Heat Transfer – Adrian Bejan

REFERENCE SITE

N/A

Fall Semester L-2, T-II

COUR	COURSE INFORMATION							
Course	Code ME 233		L	ecture	Con	tact Hou	ırs 3.00	
Course	Title Manufacturing	Fechnology	С	redit	Hours	8	3.00	
PRE-R	REQUISITE							
NA								
CURR	ICULUM STRUCTURE	1						
Outcon	ne Based Education (OBE))						
SYNO	PSIS/RATIONALE							
To intr	oduce the students to dif	ferent types of	manufacturing	g mac	hiner	ies and	components, their	
		• •						
product	tion process and industrial	structure, operat	ing principle a	nd de	esign.			
OBJE	CTIVE							
1. Intro	oduction to Manufacturing	Process and mad	chine Overviev	W				
2. Intro	duction to Plastic, Cerami	c and Glass produ	uct manufactu	ring p	proces	sses		
			1 = 0 =					
3. Intro	duction to Concept of Qua	lity circle, TQM	and TQC.					
IFAD		ENEDIC SUIT	TC					
LEAK	NING OUTCOMES & G	ENERIC SKIL		1				
No	Course Outcome	Corresponding	Bloom's	CD	CA	VD	Assessment	
INU.	Course Outcome	PO	Taxonomy	Cr	CA	Kſ	Methods	
	Demonstrate knowledge							
	of manufacturing							
	processes with set of							
CO1	functional requirements	1,7	C1, C3			1,4,6,7	Q, ASG, F	
	and product							
	development.							

CO2	Analyze various machines and machining operations of manufacturing products.	1,2	C3		2,3,5	Q, ASG, F
CO3	Clear understanding of economic performance and quality manufacturing products.	1,2	C1, C3		4,6,7	Q, F, CS
CO4	Design theoretical impacts of materials in product and their failure analysis.	3,12	C1, C3		5,6,8	Q, F, CS, Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

a. Main Contents: Basic manufacturing process overview, Methods of manufacture and process, Metal cutting and operation, Introduction to Plastic, ceramic and glass product manufacturing processes, Quality control, Machine Tools and operations

b. Detail Contents: Basic manufacturing process overview: Conventional and non-conventional (Mechanical, Thermal, Chemical) machining process.Methods of manufacture and process– metal casting, metal forming and metal joining, welding. Metal cutting and operation: Cutting Tool Materials, Geometry and Surface Finish, Effect of machining parameters on surface finish. Machining equations for cutting operations. Mechanics of Machining Processes, Tool Wear, Tool Life. Types of motions in machining, turning and Boring, Shaping, Planning and Slotting, Thread cutting, Drilling, Milling, Gear tooth cutting. Machining parameters and related quantities. Introduction to Plastic, ceramic and glass product manufacturing processes. Quality control: Concept of quality circle, TQM and TQC.

Machine Tools and operations: Introduction, Classification, construction and specifications of lathe, drilling machine, milling machine.

CO-PO MAPPING

No	Course Louis Andrews	PROGRAM OUTCOMES (PO)											
INO.	Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Demonstrate knowledge of manufacturing processes with set of functional requirements and product development.	3						3					
CO2	Analyze various machines and machining operations of manufacturing products.	3	3										
CO3	Clear understanding of economic performance and quality manufacturing products.	3	3										
CO4	Design theoretical impacts of materials in product and their failure analysis.			3									3

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICA	TION FOR CO	-PO MAPPING
Mapping	Level of Matching	Justification
CO1-PO1	3	Understanding the knowledge associated with manufacturing and product development.
CO1-PO7	3	Students will be able to get Understand about product manufacturing and associated feature and apply their knowledge by ensuring environment and sustainability.
CO2-PO1	3	Students will be able to conduct different machining operation by gaining knowledge about machining processes.
CO2-PO2	3	Students will apply appropriate techniques, resources, and modern engineering of machining to improve productivity of industry.
CO3-PO1	3	Students will be able to evaluate the quality of manufacturing keeping mind its economic point of view
CO3-PO2	3	Students will be able to analyze efficiency by selecting method of production.
CO4-PO3	3	Students will be able to analyze material at design point of view.
CO4-PO12	3	Students will be able to conduct investigation, design the product which will prepare them to take challenges in upcoming future.

FEACHING LEARNING STRATEGY					
Teaching and Learning Activities	Engagement (hours)				
Face-to-Face Learning	42				
Self-Directed Learning	75				
Formal Assessment	5.5				
Total	122.5				

TEACHING METHODOLOGY

Class Lecture, Pop quiz, Case study, Problem solving

COURSE SCHEDULE								
Week	Торіс	СТ	Remarks					
Class (1-4)	1.Basic manufacturing process overview: Conventional and non-conventional (Mechanical, Thermal, Chemical) machining process.	CT 01						
Class (5-16)	2.Methods of manufacture and process– metal casting, metal forming and metal joining, welding.							
Class (17-26)	3.Metal cutting and operation: Cutting Tool Materials, Geometry and Surface Finish, Effect of machining parameters on surface finish. Machining equations for cutting operations. Mechanics of Machining Processes, Tool Wear, Tool Life. Types of motions in machining, turning and Boring, Shaping, Planning and Slotting, Thread cutting, Drilling, Milling, Gear tooth cutting. Machining parameters and related quantities.	CT 02 MT						
Class (27-31)	product manufacturing processes							
Class (32-33)	5. Quality control: Concept of quality circle, TQM and TQC.							
Class (34-42)	6. Machine Tools and operations: Introduction, Classification, construction and specifications of lathe, drilling machine, milling machine.	CT 03						

ASSESSMENT S	TRATEGY	7			
	COs	Assessment Method	(100%)	Remarks	
		Class Assessmen	Class Assessment		
	1	Assignment	Assignment 20		
	2	Assignment	20		-
		Exam	1		-
	1	Final Exam, CT	80		-
	2	Final Exam, CT, MID	80		
	3	Final Exam, CT	80		
	4	Final Exam, CT, Mid	80		
REFERENCE BO	OKS				
1. Manufacturing E	Engineering	and Technology - Serope	Kalpakjianı	StevenR. Sch	nmid
2. Manufacturing p	rocesses and	1 materials for engineeerin	gs – Doyle	Morris.	
3. Introduction to M	Ianufacturir	ng process – Jhon A Schey	<i>.</i>		

Fall Semester L-2, T-2

COURSE INFORMATION									
Course Code	ME-234	Lecture Contact Hours	3.00						
Course Title	Manufacturing Technology Sessional	Credit Hours	1.50						
PRE-REQUISITE									
ME 233									
CURRICULUM STRUCTURE									
Outcome Based Education (OBE)									

SYNOPSIS/RATIONALE

The focus of this curriculum is the development of students' practical knowledge regarding process and tools used in manufacturing. Students will observe different types of chip, determine chip reduction coefficient and get familiarized with CNC milling machine, bending machine, column & knee type milling machine. They will also manufacture an industrial part by using lathe & shaper machine. Thus allowing them to relate theoretical knowledge with practical.

OBJECTIVE

1. Manufacturing Process Overview: Product concepts, Market feasibility, Engineering design, Prototyping.

2. Production Processes: Machine and process overviews, Finishing, Assembly. Production Machine Operations: Presses, Molding/Casting, Drilling/Boring, Machining, Welding, Finishing, Advanced Intelligence Automation, Programmable Logic Controllers.

LEARNING OUTCOMES & GENERIC SKILLS								
No.	Course Outcome	Corresponding PO	Bloom's Taxonomy	СР	CA	KP	Assessment Methods	
CO1	Be able to recommend appropriate part manufacturing processes when provided a set of functional requirements and product development constraints	3	C5			5	R, Q, LT	
CO2	Develop engineering knowledge of manufacturing process of various materials	1	Р5			3	R, Q, LT	
CO3	Develop thorough engineering sense of various machines and machining operations related to manufacturing products	1	Р5			3	R, Q, LT	
CO4	Be able to understand and assess economic performance and quality analysis of various manufactured products.	11	Р3			8	R, Q, LT	
			-					

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

1) Study of Different Types of Chip and Determination of Chip Reduction Coefficient.

- 2) Study and Determination of Tool Wear.
- 3) Study of a CNC milling machine.
- 4) Gear Cutting on a Column & Knee Type Milling Machine.
- 5) Manufacturing of an Industrial Part by Using Lathe & Shaper Machine

6) Study of Injection Molding Machine

7) Study of EDM (Electric Discharge Machining)

CO-PO MAPPING

No	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
190.			2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to recommend appropriate part manufacturing processes when provided a set of functional requirements and product development constraints			3									
CO2	Develop engineering knowledge of manufacturing process of various materials	3											
CO3	Develop thorough engineering sense of various machines and machining operations related to manufacturing products	3											
CO4	Be able to understand and assess economic performance and quality analysis of various manufacturing products								3				
Justifica	tion for CO-PO mapping:												

Mapping	Corresponding Level of	Justifications
	matching	
CO1-PO3	3	In order to manufacture part design analysis is important and then process development for manufacturing part is analyzed.
CO2-PO1	3	Engineering knowledge is required to develop complete understanding of manufacturing process of various materials
CO3-PO1	3	In order to develop thorough engineering sense of various machines and machining operations related to manufacturing products engineering knowledge is a must.
CO4-PO11	3	Knowledge regarding economic decision-making, project management and finance is essential to be able to understand and assess economic performance and quality analysis of various manufacturing products.

TEACHING LEARNING STRATEGY					
Teaching and Learning Activities	Engagement (hours)				
Face-to-Face Learning					
Lecture	14				
Practical	28				
	Total 42				
Self-Directed Learning					
Preparation of Lab Reports	10				
Preparation of Lab Test	10				
Preparation of presentation	5				
Preparation of Quiz	10				
Engagement in Group Projects	20				
Formal Assessment					
Continuous Assessment	14				
Final Quiz	1				
Total	112				

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

Week-1	Introduction and short brief regarding lab proceedings and experiments
Week-2	Study of Different Types of Chip and Determination of Chip Reduction Coefficient.
Week-3	Study and Determination of Tool Wear.
Week-4	Study of a CNC milling machine.
Week-5	Gear Cutting on a Column & Knee Type Milling Machine.
Week-6	Mid Term Lab Viva
Week-7	Mid Term Lab Quiz
Week-8	Manufacturing of an Industrial Part by Using Lathe & Shaper Machine
Week-9	Study of Injection Molding Machine
Week-10	Study of EDM (Electric Discharge Machining)
Week-11	Review Class
Week-12	Lab Report Submission
Week-13	Final Lab Viva
Week-14	Final Lab Quiz

ASSESSMENT STRATEGY							
	Components						
Continuous Assessment (60%)	Lab participation and Report	30%					
(0070)	Labtest-1, Labtest-2	30%					
	Lab Quiz	40%					
	Total Marks	100%					
REFERENCE BOOK	S						
$1. Manufacturing Engineering and Technology (4^{th} edition) - Serope Kalpak jiann Steven R. Schmid,$							
2."Principles of Modern Manufacturing, 5 th Edition, SI Version 2013", Authors: Mikell P. Groover,							
3. Manufacturing Processes and Materials for Engineers –Doyle Morris							
4.Education Quality Co	ontrol and Management-Dr. M.A.A Hasin						

Spring Semester L-2, T-I

COURSE INFOR	MATION					
Course Code	ME 245	Lecture Contact Hours	: 3.00			
Course Title	EngineeringMechanics I	Credit Hours	: 3.00			
PRE-REQUISITE	E					
None						
CURRICULUM S	STRUCTURE					
Outcome Based Ed	lucation (OBE)					
SYNOPSIS/RATIONALE						
To familiarize stu	dents with the principles of	static equilibrium by a	pplying Newton's laws of			
motion to solve engineering problems. Accentuation is set on drawing free body diagrams. Topics						
incorporate introduction to forces; 2D equilibrium of particles and rigid bodies; center of gravity						

and centroids; friction; analysis of truss structures; and moments of inertia.

OBJECTIVE

1. Introduction to the construction of "Free Body Diagrams" of real-world problems and apply Newton's Laws of motion and vector operations to assess equilibrium of particles and bodies

2. To apply the principles of equilibrium of particles and bodies to analyze the forces in planar truss members and structures.

3. Understanding the theory of dry friction and analysing the equilibrium of rigid bodies subjected to this force

4. To discuss the concepts of center of gravity, centroids and moment of inertia and apply the concepts to compute their location for bodies of arbitrary shape

LEAR	KNING OUTCOMES & GEI	NERIC SKILLS					
No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Determine the equilibrium of a particle and rigid bodies in space using principle of laws of mechanics	1,2	C1, C2, C3	1,2, 3			Q, ASG, F
CO2	Understanding of force systems of planar truss member, structures	1,2	C2, C3	1,2, 3			Q, ASG, F
CO3	Analyse and design systems that include frictional forces	2,3	C2, C3, C4	1,2, 3,4	1,2		Q, F, CS
CO4	Determine location of center of gravity, centroids and moment of inertia of bodies of arbitrary shape.	1,2	C2, C3	1,2, 3	1,2		Q, F, CS

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- 1. Basic concepts of mechanics
- 2. Centroids
- 3. Moments of inertia
- 4. Truss, frames, and machines
- 5. Friction
- 6. Cables
- 7. Problems solving using software

b. Detail Contents:

Basic concepts of mechanics: Free body diagrams; statics of particles and rigid bodies; centroids of lines, areas (planar areas, composite areas) and volumes; Properties of forces: Concurrent / coplanar / non-coplanar force systems, resultant of forces, resolution of forces, rectangular and polar components of forces in plane and 3-D space; Analysis of structures: Forces in trusses, frames and machines, zero force members; forces in cables; friction; Equilibrium of rigid bodies: Conditions for maintaining equilibrium in 2 and 3-D; Statical determinacy: Identification of known forces and solution of unknown reactions for a structure, combined loads, application of equilibrium equations for statical determinacy; Moments of inertia: Of areas and masses; moments of force in vector notation; equivalent force system; parallel-axis theorem for determination of rotational inertia about a different axis; polar moments; of inertia; Analysis: Of two and three dimensional problems; simulation using MATLAB

CO-PO	CO-PO MAPPING														
_	_			_		DI			M		TCC		S (D)	<u>))</u>	
No.		Course Outcon	ne	1	2	ГI 2		5					ی (FC) 11	12
	Datama	ing the aquilibrium	mofo	1	2	3	4	3	0	/	0	9	10	11	12
	particle	particle and rigid bodies in space													
COI	using p	rinciple of laws of	f mechanics	3	3										
CO2	Unders	tanding of force s truss members, str	ystems of ructures	3	2										
	F	,		5	2										
	Analyz	e and design syste	ems that												
CO3	include	frictional forces			3	2									
	Determ	ine location of ce	nter of												
CO4	gravity	, centroids and mo	oment of	3	2										
	inertia	of bodies of arbitr	ary snape.												
(Nume	rical met	hod used for map	ping which ir	ndica	ites 3	3 as 1	high	i, 2	as n	nedi	ium	and	1 as 1	ow lev	vel of
matchi	ng)														
	U,														
JUSTI	FICATI	ON FOR CO-PC) MAPPING	r											
Map	oping	Level of Matching					Ju	istif	ica	tion					
CO1 I	001	2	Students w	ents will be able to draw Free Body diagrams of											
COI-F	01	5	concepts of	f Nev	wtor	n's la	ies a iws	of 1	wii not	ion.		e lo	KHOW	v the	
CO1-P	PO2	3	Application	n of eeri	New ng r	ton ⁹	's la Iem	W 0	of m	otic	on ai	nd v	ector	s to re	eal
			Understanding of force systems of planar truss me				ember	·s							
CO2-P	PO1	3	structures will enhance their engineering knowledge				lge								
CO2-P	PO2	2	Students will have an ability to examine forces in trustructures				trusse	s and							
CO3-P	PO2	3	Students will be able to identify, formulate and a complex engineering problems by applying princ friction				nd an rinci	alyze ples o	f dry						

СОЗ-РОЗ	2	They will be competent enough to design simple systems including friction							
CO4-PO1	3	Students will have knowledge of centroids, moment of inertia and will observe how this knowledge relates to engineering							
CO4-PO2	2	Student will be apt in determining cent gravity and moment of Inertia of 2D an	Student will be apt in determining centroids, center of gravity and moment of Inertia of 2D and 3D bodies						
TEACHING LEARNING STRATEGY									
Teaching and L	earning Activities	3	Engagement (hours)						
Face-to-Face Le	earning								
			42						
Self-Directed Learning75									
Formal Assessment 5.5									
Total 122.5									
TEACHING METHODOLOGY									

Class Lecture, Pop quiz, Case study, Problem solving

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
Class 1-12	Basic concepts of mechanics; Statics of particles and rigid bodies	CT 01	
Class 13-21	Centroids of lines, areas and volumes; Moments of inertia of areas and masses	CT 02	
Class 22- 27	Forces in truss, frames, and machines	MT	
Class 28- 36	Friction	CT 03	
Class 37-39	Forces in cables		
Class 40-42	Solving basic problems using software		

ASSESSMENT STRA	ГEGY			
	COs	Assessment	(100%)	Remark
		Method)	S
		Class Assessm	ent	
	1	СТ	20	
	3	СТ	30	
	4	СТ	20	
		Exam	1	
	1	MID, Final Exam	80	
	2	Final Exam	100	
	3	Final Exam	80	
	4	MID, Final Exam	70	
REFERENCE BOOKS	5			
1. Vector Mechanics for	Engine	ers: Statics- Ferdinand	d P. Beer,	E Russell J

McGraw-Hill Companies, 5th edition 1988.

2. Engineering Mechanics Statics (10th Edition)– R.C. Hibbeler

Fall Semester L-2, T-II

COURSE INF	ORMATION						
CourseCode	ME 247	LectureContactHoursC	: 3.00				
CourseTitle	EngineeringMechanics II	edit Hours	: 3.00				
PRE-REQUIS	PRE-REQUISITE						
ME-245							
CURRICULU	M STRUCTURE						
Outcome Based	Outcome Based Education (OBE)						
SYNOPSIS/RATIONALE							
This course teaches students how to apply Newtonian physics to analyse relatively simple physical							

This course teaches students how to apply Newtonian physics to analyse relatively simple physical mechanisms with some emphasis on commonly encountered engineering applications. It follows on from the Statics course, but considers systems that are not in equilibrium i.e. with velocity and acceleration. Some of the topics covered are pure kinematics (a mathematical description of motion only), while others are kinetic (determine motion in problems involving the concepts of force and energy). The course is restricted to 2-D (planar) mechanisms

OBJECTIVE

1. Explain basic kinematics concepts – displacement, velocity and acceleration (and their angular counterparts).

2. Explain and be able to apply Newton's laws of motion.

3. Explain and be able to apply other basic dynamics concepts - the Work-Energy principle, Impulse-Momentum principle and the coefficient of restitution

4. To teach planar kinematics of rigid bodies, systems of rigid bodies and particles

5. To teach problem formulation and solution methods for the dynamic equations of motions for planar motion of rigid bodies.

6. Introduction to velocity and acceleration diagram.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	General knowledge about mathematics, physics and engineering to solve real world problems	1,2	C1, C2, C3	1,5, 6			Q, ASG, F
CO2	Apply fundamental concepts of kinematics and kinetics of particles and rigid bodies to the analysis of simple, practical problems.	1,2	C2, C3	1,3			Q, ASG, F
CO3	An ability to apply this knowledge for desired analysis or methods to solve engineering problems.	1,2	C2, C3, C4	1,3	1,2		Q, F, CS
CO4	To develop the capacity to predict the effects of force and motion while carrying out the creative design functions of engineering	2,3	C3, C4	1,3	1,2		Q, F, CS

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- 1. Kinematics of particles
- 2. Plane motion of rigid bodies: forces and acceleration
- 3. Energy and momentum method
- 4. System of particles
- 5. Kinematics of rigid bodies -3-D properties of sections

b. Detail Contents:

Kinematics of particles; Kinetics of particles: Newton's second law; energy and momentum method; System of particles; Kinematics of rigid bodies; Plane motion of rigid bodies: forces and acceleration; Energy and momentum methods; Kinematics of rigid bodies -3-D properties of sections

No	Course Outcome			PI	ROC	GRA	M	OU	TCC	ME	S (PC))	
110.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	General knowledge about mathematics, physics and engineering to solve real world problems	3	3										
CO2	Apply fundamental concepts of kinematics and kinetics of particles and rigid bodies to the analysis of simple, practical problems	3	2										
CO3	An ability to apply this knowledge for desired analysis or methods to solve engineering problems	1	2										
CO4	To develop the capacity to predict the effects of force and motion while carrying out the creative design functions of engineering		2	1									

CO-PO MAPPING

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATIO	DN FOR CO-PO M	IAPPING
Mapping	Level of Matching	Justification
CO1-PO1	3	Developing dynamic equations of motion will provide knowledge from physics and mathematics to build up engineering fundamental equations.
CO1-PO2	3	Application of dynamics equation of motion will enable the students to analyse problems arise in various engineering problems
CO2-PO1	3	Students will develop an ability to understand the kinematics and kinetics of particles and rigid bodies using force and acceleration, work and energy, and impulse and momentum principles.
СО2-РО2	2	Students will be apt in analysing kinetics and kinematics of dynamic system
СОЗ-РО1	1	Students will have knowledge on power and energy losses of dynamically loaded objects
CO3-PO2	2	Students will have an ability to calculate required power and energy losses of dynamically loaded objects and to apply the laws of motion to relate forces obtained from free body diagrams and accelerations from kinematics to derive the equations of motion for particles and rigid bodies in planar motion.
CO4-PO2	2	Students will have examining knowledge on various types of dynamics system and their applications
СО4-РОЗ	1	Students will develop an ability to solve dynamic problems with respect to linear and angular position, acceleration and velocity using the resulting forces and moments and principles of work and energy

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
	42
Self-Directed Learning	75
Formal Assessment	5.5
Total	122.5
TEACHING METHODOLOGY	

Class Lecture, Pop quiz, Case study, Problem solving

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
Class 1-6	Kinematics of particles – Basic Concepts and problems	CT 01	
Class 7-12	Kinetics of particles: Newton's second law	CT 02	
Class 13- 21	Plane motion of rigid bodies: forces and acceleration	МТ	
Class 22- 27	Energy and momentum method	MT	
Class 28-36	System of particles	CT 03	
Class 37-42	Kinematics of rigid bodies -3-D properties of sections		

	COs	Assessment Method	(100%)	Remarks
		Class Assessme	ent	
	1	СТ	20	
	2	СТ	30	
	3	СТ	20	
	4	СТ	30	
		Exam		
	1	MID, Final Exam	80	
	2	MID, Final Exam	70	
	3	MID, Final Exam	80	
	4	Final Exam	70	
REFERENCE	BOOKS			
. Vector Mecha	anics for E	Engineers: Dynamics – Fe	rdinand P. B	eer, E Russell
Engineering Me	chanics S	statics and Dynamics – Io	senh F Shell	

Spring Semester L-2, T-I

COURSE INFORMATION								
Course Code	ME 258	Lecture Contact Hours	3.00					
Course Title	Mechanical Engineering Drawing-1	Credit Hours	1.50					
PRE-REQUISIT	E							
None								
CURRICULUM	STRUCTURE							
Outcome Based Ed	ducation (OBE)							
SYNOPSIS/RAT	IONALE							

The rationale for this course is to motivate students by fostering creativity and introducing conceptual design, sustainable design in engineering, industrial design, computer aided design and drafting early in the course. Early training and practice in the engineering design method, the introduction to engineering handbooks. Engineers need skills in graphical communication and spatial vision in the practice of their profession.

OBJECTIVE

1. To enable students to acquire and use engineering drawing skills as a means of accurately and clearly communicating ideas, information and instructions.

2.To enable students to acquire requisite knowledge, techniques and attitude required for advanced study of engineering drawing.

LEARNING OUTCOMES & GENERIC SKILLS											
No.	Course Outcome	Correspond ing PO	Bloom's Taxonomy	СР	CA	KP	Assessme nt Methods				
CO1	Ability to create simple engineering drawing and sketches based on current practice.	3	C4			5	T,ASG,Q				
CO2	To develop the skills to read manufacturing and construction drawings used in industry.	10	Р5			5	T,ASG,Q				
CO3	Students should be able to make use of and interpret standard conventions used in engineering drawing.	1	P2,P3			5	T,ASG,Q				
CO4	Learn basic AutoCad skills and be able to make use of AutoCAD for 2-D representations.	5	C3			6	T,ASG,Q				

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Manual Drawing (50%): Introduction; Instruments and their uses; First and third angle projections; Orthographic drawings; Isometric views; Missing lines and views; sectional views and conventional practices; Auxiliary views. Reading Civil Drawing for Mechanical Design of HVAC System.

CAD (50%): Importance to design and drafting, Setting up a drawing: starting SolidWorks, menu, planning for a drawing, basic commands, making a simple 2-D drawing, layers, object snap, poly lines and other features, file handling and display control, editing and dimensioning.

CO-PO MAPPING															
						PI	ROC	GR A	٩M	OU	TCO	OME	ES (PC))	
No.	(Course Learning O	utcome	1	2	3	4	5	6	7	8	9	10	1	12
CO1	To d simp sketc	levelop the ability le engineering dr ches based on curre	to produce rawing and ent practice.			3									
CO2	To manu draw	o develop the skills to read nanufacturing and construction rawings used in industry.											3		
CO3	To develop a working knowledge of the layout of plant and equipment.														
CO4	CO4 Capability to use AutoCAD for 2- D representations.							3							
Justific	ation	for CO-PO mapp	ing:												
Mappiı	ng	Corresponding Level of matching					J	usti	fica	tio	ns				
CO1PO	_	8	To design system and components ability to create simple engineering drawing and sketches is required.												
	03	3	To design s engineering	syste g dra	m a win	nd c g an	omp d sk	oon ketc	ents hes	abi is r	ility equi	to cr red.	eate s	impl	e
CO2PO	93 910	3	To design s engineering To commu manufactur manufactur	g dra nicat ers o ring	te win	nd c g an ith c echa cons	omr d sk other anic struc	r en al s	ents hes gine yste n dı	abi is r eeri ems awi	ng p , the	to cr red. rofes skill is a	eate s ssiona l to rea must.	impl ls an ad	e d
CO2PO CO3PO	93 910 91	3	To design s engineering To commu manufactur manufactur To interpre knowledge	g dra nicat ers (ing (t and of e	m at win te wi of m and 1 une	nd c g an ith c echa cons ders	omp d sk theranic struc tanc	r en al s ctio	ents hes gino yste n di anda lam	eeri eeri ems cawi	ng p , the ings enginals w	to cr red. rofes skill is a p neeri vill b	eate s ssiona l to rea must. ing co e requ	impl ls an ad nven tired	e d tions

TEACHIN	IG LEARNING STRATEGY	
Teaching an	nd Learning Activities	Engagement (hours)
Face-to-Fac	ce Learning	
Lec	ture	14
Prac	ctical	
Self-Direct	ed Learning	Total 42
Prei	paration of Assignments	10
Pre	paration of Mid Ouiz	10
Pre	eparation of presentation	5
Pre	eparation of Quiz	10
En	gagement in Group Projects	20
Formal Ass	sessment	
Cor	ntinuous Assessment	14
Fina	al Quiz	1
Total		112
TEACHIN	IG METHODOLOGY	
Lecture fol	lowed by practical experiments and discussion, Co-operative and	d Collaborative Method,
Project Bas	ed Method	
COURSE	SCHEDULE	
Week-1	Introduction; Instruments and their uses; First and third angle pr	ojections;
Week-2	Orthographic drawings;	
Week-3	Orthographic drawings;	
Week-4	sectional views and conventional practices;	
Week-5	sectional views and conventional practices;	
Week-6	Auxiliary views	
Week-7	Isometric views	
Week-8	Isometric views	
Week-9	Reading Civil Drawing for Mechanical Design of HVAC System	n.
Week-10	Importance to design and drafting, Setting up a drawing: start planning for a drawing	ting SolidWorks, menu,
Week-11	Basic commands, making a simple 2-D drawing.	
Week-12	Layers, object snap, poly lines and other features.	
Week-13	File handling and display control, editing and dimensioning.	
Week-14	Viva and Quiz Test	

ASSESSMENT STRATEGY							
Assessment Method Gradin							
Continuous Assessment	Class Performance	20%					
(60%)	Attendance	10%					
	Assignment	10%					
	Final Lab Quiz	50%					
	Viva	10%					
	Total Marks	100%					
REFERENCE BOOKS							
1.Metric Drafting –Paul V	Wallah, Publisher –GlenceoPublishing Co, Inc; 1979.						
2. Drafting Technology a	nd Practice – William P. Spence, Publisher – Chas A. Benn	ett Co, Inc, 1973.					
3.Technical Drawing –Fr	ederick E Giesecke, Alva Mitchell, Henry C. Spencer						
4.Mechanical Engineering	g Drawing-AC Mandal& M.Q. Islam						

Fall Semester L-2, T-2

COURSE INF	FORMATION		
Course Code	ME-260	Lecture Contact Hours	3.00
Course Title	Mechanical Engineering Drawing-2	Credit Hours	1.50
PRE-REQUISI	TE		
ME 258			
CURRICULU	IM STRUCTURE		
Outcome Base	d Education (OBE)		
SYNOPSIS/R	ATIONALE		
An introductio	n course which dives into the 3D and solid	modelling design concepts	in computer
assisted design	techniques. The student will learn how to	make the software work for	r them while
gaining experie	ence in solving drafting problems utilizing a	n interactive CAD system.	Students will
extend their C	AD competency by solving sophisticated d	rafting problems utilizing a	in interactive

CAD system, applications, course description and lecture with an opportunity to test for third party credentials via Solid Works.

OBJECTIVE

1. Gaining a working knowledge of CAD solid modelling (SolidWorks).

2. Theoretical concepts of engineering graphics, including orthographic projection, auxiliary views and sectioning, general dimensioning and tolerance, and geometric dimensioning and tolerance.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Correspondin g PO	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Develop competency with multiple drawing and modification commands in SolidWorks.	5	Р3			6	T,ASG,Q
CO2	Be able to design three- dimensional solid models.	3	C6			5	T,ASG,Q
CO3	Capability to design three- dimensional assemblies incorporating multiple solid models	3	C6			5	T,ASG,Q
CO4	This knowledge will be applied during the whole engineering career.	6	Р5			12	T,ASG,Q

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

1. Introduction, Similarities and differences between conventional drawing and computer aided drawing (CAD)

2. Planes, sketching on planes, sketches (Line tool, rectangle tool, circle tool), dimensions

- 3. Smart dimensions, sketch relations
- 4. Extrude boss/base, extrude cut, revolve boss/base, revolve cut, sketching on surfaces
- 5. Filet, rib, draft, shell, sectional view
- 6. Sketches (Arc tool, spline tool, slot tool, ellipse tool, polygon tool, filet tool), convert entities, mirror entities
- 7. Linear pattern, circular pattern, sketch driven pattern, curve driven pattern
- 8. Reference geometry swept boss/base, swept cut, mirror
- 9. 3D sketches, lofted boss/base, lofted cut
- 10. Boundary boss/base, boundary cut, curve through XYZ points, Aerofoil

11. Helix and spiral, Assembly

- 12. Assembly
- 13. Toolbox, Drawing from part, Appearance

CO-PO MAPPING															
No		Course Learning	Outcome			PR	lOG	RA	M	OU	ГСО	MES	S (PC))	
110.		Course Learning	Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	De mu con	velop compete ltiple drawing and mmands in SolidW	ency with modification orks.					3							
CO2	Be dir	able to cr nensional solid mo	eate three- dels.			3									
CO3	Capability to design three- dimensional assemblies incorporating multiple solid models					3									
CO4	Th dui car	be applied engineering												3	
Justificati	on fe	or CO-PO mapping	:												
Mapping		Corresponding Level of matching					Jus	stifi	cati	on					
CO1-PO5	i	3	Knowledge re competency i	egar n cr	ding eatir	mo ig er	derr ngin	n too eeri	ol u ng (sage drav	e is r ving	equi witł	red to 1 Soli	o deve idWo	elop rks.
CO2-PO3	;	3	Knowledge of to create three	f sys e-dii	stem nens	and	l con al so	mpo olid	mer mo	nt de dels	esign s.	enh	ance	s the a	ability
CO3-PO3	;	3	Capability to multiple solid component de	des i l mo esign	i gn tl dels n.	nree req	-din uire	nens s kr	sion Iow	al a ledg	ssen ge of	nblie Syst	s inco em a	orpora nd	ating
CO4-PO6	Ĵ	2	In order to apply industry standards in the preparation of technical mechanical drawings acknowledging the consequent responsibilities relevant to professional engineering and public safety is a must.												
CO4-PO1	-PO10 2 To communicate with other mechanical engineering professionals and manufacturers of mechanical systems, be able to apply industry standards in the preparation of techn mechanical drawings is required						ns, be æchni	ing cal							

TEACHIN	IG LEARNING STRATEGY	
Teaching a	nd Learning Activities	Engagement (hours)
Face-to-Fac Lec Prac	ce Learning ture ctical	14 28 Total 42
Self-Direct	ed Learning	
Pre	paration of Assignment	10
Pre	paration of Mid Quiz	10
Pre	eparation of presentation	5
Pro	eparation of Quiz	10
En	gagement in Group Projects	20
Formal Ass	sessment	
Cor	ntinuous Assessment	14
Fina	al Quiz	1
Total		112
TEACHIN	IG METHODOLOGY	
Lecture fo Method, Pr	llowed by practical experiments and discussion, Co-operation oject Based Method	ve and Collaborative
COURSE	SCHEDULE	
Week-1	Introduction, Similarities and differences between conven computer aided drawing (CAD)	tional drawing and
Week-2	Planes, sketching on planes, sketches (Line tool, rectangl dimensions	e tool, circle tool),
Week-3	Smart dimensions, sketch relations	
Week-4	Extrude boss/base, extrude cut, revolve boss/base, revolve cut, s	ketching on surfaces
Week-5	Filet, rib, draft, shell, sectional view	8
Week-6	Sketches (Arc tool, spline tool, slot tool, ellipse tool, polygon to entities, mirror entities	ol, filet tool), convert
Week-7	Linear pattern, circular pattern, sketch driven pattern, curve driv	en pattern
Week-8	Reference geometry swept boss/base, swept cut, mirror	
Week-9	3D sketches, lofted boss/base, lofted cut	
Week-10	Boundary boss/base, boundary cut, curve through XYZ points, A	Aerofoil
Week-11	Helix and spiral, Assembly	
Week-12	Assembly	
Week-13	Toolbox, Drawing from part, Appearances	
Week-14	Lab Quiz	

ASSESSMENT STRATEGY						
	Grading					
Continuous Assessment (40%)	Class Performance	20%				
	Attendance	10%				
	Assignment	10%				
	50%					
	10%					
	100%					
REFERENCE BOOKS						
1.Metric Drafting –Paul Wallah,						
2.Drafting Technology and Practice –William P. Spence						
3. Technical Drawing – Frederick E Giesecke, Alva Mitchell, Henry C. Spencer						

Fall Semester L-2, T-2

COURSE INFORMATION								
Course Code Course Title	ME 263	Lecture Contact Hours	: 3.00					
	Numerical Analysis	Credit Hours	: 3.00					
PRE-REQUISITE								
None								
CURRICULUM STRUCTURE								
Outcome Base	d Education (OBE)							

SYNOPSIS/RATIONALE

Engineering applicationsrequire many mathematical models that cannot be solved exactly using conventional mathematics such as algebra and calculus. Therefore, this course will offer students the ability to apply different principles of numerical methods to solve engineering problems to obtain approximate solutions. The numerical method is a very powerful method but very simple to apply in solving many complex problems in Engineering. Some of the examples could be Heat Transfer, Fluid Dynamics, Structural Analysis, and Vibrations. This course makes a mathematical problem more interesting and makes Engineering problems fun to solve. This course will help students later to solve engineering problems in professional life or in academia.

OBJECTIVE

a. This course will emphasize the development of numerical algorithms to provide solutions to common problems formulated in science and engineering.

b. The primary objective of the course is to develop the basic understanding of the

construction of numerical algorithms, and perhaps more importantly, the applicability and

limits of their appropriate use.

No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods	
CO1	Demonstrate knowledge of different engineering problems and difficulties by analytical methods.	1	C1, C3	2	1,2		Q, ASG, F	
CO2	Analyzing different types of mathematical equations and their solving method by applying the numerical algorithm.	2	C3,C5	1,2	1		Q, ASG, F	
CO3	Understanding different algorithms to of the same mathematical problem.	3	C2,C3	1,2	1,2		Q, F, CS	

LEARNING OUTCOMES & GENERIC SKILLS
CO4	Connecting the theoretical problems and solving them numerically for an approximate real solution.	1,4	C4,C5	1,2	1,2		Q, F, CS, Pr	
(CP_{-})	(CD. Complex Problems, CA. Complex Activities, KD. Knowledge Profile, T. Testi DD. Projecti							

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

i. Linear, Quadratic, Newton's Divide Difference Interpolating Polynomials

ii. Integral Metods

iii. Engineering Applications of Roots of Equations;

iv. Engineering Applications for Linear Algebraic Equations.

b. Detail Contents:

Approximations, Taylor's Series, and Errors. Linear, Quadratic, Newton's Divide Difference Interpolating Polynomials, ad Lagrange Interpolating Polynomials. Graphical Method, Bisection Method, False-Position Method. The trapezoidal rule, Simpson's Rule, and Integration with Unequal Segments. Simple Fixed-Point Iteration, Newton-Raphson Method, Secant Method, System of Nonlinear Equations. Numerical Differentiation, Richardson's extrapolation, Forward, backward, and central divide difference formula. Muller's Method, Bairstow's Method. Solving ODE, Euler's Method, Heun's Method, Runge-Kutta Methods for lower and higher order, and Adaptive RK Method, Engineering Applications of Roots of Equations. Boundary Value Problems, Eigen Value Problems, Shooting method. Gauss Elimination, Gauss-Jordan, LU Decomposition, Matrix Inverse, Gauss-Seidel.)derivation of Laplace Equation, Laplacian Difference Equation, Liebmann Method. Engineering Applications of Linear Algebraic Equations. Solving PDE for Derivative Boundary Conditions, Solution of first-order differential equations and 2nd order Partial Differential Equation (Elliptic equations, Parabolic equations, Hyperbolic equations)

CO-PO MAPPING PROGRAM OUTCOMES (PO) No. Course Outcome 1 2 3 4 7 8 9 10 11 12 5 6 Demonstrate knowledge of different engineering problems and CO1 3 difficulties with analytical methods. Analyzing different types of mathematical equations and their CO2 3 solving method by applying the numerical algorithm. Understanding different algorithms to of the same mathematical CO3 3 problem. Connecting the theoretical problems CO4 and solving them numerically for an 2 3 approximate real solution

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level of Matching	Justification
CO1-PO1	3	Students will learn how to solve different engineering problems by applying analytical methods.
CO2-PO2	3	Students by analysing different mathematical equation and applying numerical algorithm will be able to solve complex Engineering problems
CO3-PO3	3	Students will learn about the different algorithms of same mathematical problems
CO4-PO1	2	Students will gain knowledge about approximate real solutions
CO4-PO4	3	Students will be able to connect theories with approximate real solution and thus apply this knowledge to investigate

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
	42
Self-Directed Learning	75
Formal Assessment	5.5
Total	122.5
TEACHING METHODOLOGY	

Class Lecture, Pop quiz, Case study, Problem solving

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
Class 1-9	Approximations, Taylor's Series, and Errors. Linear, Quadratic, Newton's Divide Difference Interpolating Polynomials, ad Lagrange Interpolating Polynomials	CT 01	
Class 10-15	Graphical Method, Bisection Method, False- Position Method. The trapezoidal rule, Simpson's Rule, and Integration with Unequal Segments.		
Class 16- 25	Simple Fixed-Point Iteration, Newton-Raphson Method, Secant Method, System of Nonlinear Equations. Numerical Differentiation, Richardson's extrapolation, Forward, backward, and central divide difference formula.	CT 02	
Class 26- 29	Muller's Method, Bairstow's Method. Solving ODE, Euler's Method, Heun's Method, Runge- Kutta Methods for lower and higher order, and Adaptive RK Method,		
Class 30-34	Engineering Applications of Roots of Equations. Boundary Value Problems, Eigen Value Problems, Shooting method.	MT	
Class 35-36	Gauss Elimination, Gauss-Jordan, LU Decomposition, Matrix Inverse, Gauss- Seidel.)derivation of Laplace Equation, Laplacian Difference Equation, Liebmann Method.	CT 03	
Class 37-42	Engineering Applications of Linear Algebraic	CT 04	

Conditions, Solution of first-order differential equations and 2 nd order Partial Differential	Equation (Elliptic equation Hyperbolic equation	uations, Parabolic equations,
Equations. Solving I DE for Derivative Doundary	Conditions, Solution	of first-order differential

ASSESSMENT STRATEGY

COs	Assessment Method	Remarks	
	Class Assessmen	ıt	
1	Assignment	20	
2	Assignment	20	
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	100	
4	Final Exam. CT. Mid	100	

REFERENCE BOOKS

1. Numerical Methods for Engineers (4th edition) - Steven C. Chapra, Raymond P. Carale

- 2. Applied Numerical Analysis (5th edition) Curtis F. Gerald, Patrick O. wheatley
- 3. Numerical Methods: Using Matlab, Fourth Edition, 2004 John H. Mathews and Kurtis D. Fink
- 4. Numerical Methods E. Balagurusamy

Fall Semester L-2, T-2

COURSE INFORMATION						
Course Code Course Title	ME-264 Numerical Analysis Sessional	Lecture Contact Hours Credit Hours	3.00 1.50			
PRE-REQUIS	SITE					
ME 263						
CURRICULU	M STRUCTURE					
Osterne Dere	1 = 1 = 1 = 1					

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This module provides in-depth coverage of key numerical methods to solve practical mathematical problems that occur throughout engineering. It demonstrates the use of numerical analysis as a powerful problem-solving tool in engineering. The course encompasses Numerical Analysis, Numerical Integration, and Solutions to Ordinary Differential Equations, with applications to engineering problems through computational simulations using MATLAB.

OBJECTIVE

1. Understand the implications of digital number representation and digital arithmetic for computational science and engineering.

2. Develop and implement numerically stable and accurate algorithms for all the basic tasks of computational science and engineering.

LEAR	NING OUTCOMES & GENERI	C SKILLS					
No.	Course Outcome	Correspond ing PO	Bloom's Taxonomy	СР	CA	KP	Assessmen t Methods
CO1	Be able to interpret the fundamental principles of digital computing, including number representation and arithmetic operations.	1	P2			2	T,ASG,Q
CO2	Examine thelinkagebetweenaccuracy,stabilityandconvergence	1	P4			2	T,ASG,Q
CO3	To be able to demonstrate error analysis for arithmetic operations.	1	C6			2	T,ASG,Q
CO4	Perceive the propagation of errors through complex numerical algorithms.	5	C2			6	T,ASG,Q
CO5	Enable students to learn Matlab coding, a powerful Engineering tool which will help them to in their future carrier.	12	Р3			8	T,ASG,Q
(CP- Co ASG –	omplex Problems, CA-Complex Activ Assignment; Pr – Presentation; R - Re	ities, KP-Know port; F – Final I	ledge Profile, 7 Exam)	Γ – Te	st; PR –	- Proje	ct; Q – Quiz;
COUR	SE CONTENT						
Roots	of polynomials and transcendenta	l equations; D	eterminants a	ind m	atrices	; Eige	n values
and eigen vectors; Solution of linear and non-linear algebraic equations; Solution of first-order							
differential equations. Interpolation methods: Numerical differentiation and integration:							
Solvin	againstions by finite differences:	Juryo fitting					-
		Juive munig					

						DI.	200	R A	М		TCO	ME		<u>)</u>]
No.		Course Learning	Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to interpret the fundamental principles of digital computing, including number representation and arithmetic			3											
CO2		mine the linkaguracy, stability and	ge between convergence	3											
CO3	To ana	be able to demo lysis for arithmetic	onstrate error operations.	2											
CO4	Perceive the propagation of errors through complex numerical algorithms.							3							
CO5	To be able to test numerical stability														3
Justification for CO-PO mapping:															
Mapping	g Corresponding Justifications Level of matching														
CO1-PO	1	3	Engineering knowledge is required to understand the fundamenta principles of digital computing, including number representation and arithmetic operations.				ental ation								
CO2-PO	1	3	In order to b stability and c	e al onv	ole t erge	o ex nce,	kam eng	ine inee	the ering	lin g kr	kage nowl	e bet edge	ween is a i	accu must.	racy,
CO3-PO	1	2	Engineering knowledge is required to be able to demon error analysis of arithmetic operations.				emon	strate							
CO4-PO5 3 Modern tool errors through		Iodern tool usage is required to perceive the propagation of rors through complex numerical algorithms.							on of						
CO5-PO	CO5-PO12 3 To be able to usage is complete able to apple			o te oulsc ly la	st fo ory. T ater i	ornu This n the	mer is a eir c	ical life arri	sta long er.	bili g le	ty ai sson	nalys whic	sis m ch, st	odern udents	tool s will

TEACHING LEARNING STRATEGY				
Teaching and Learning Activities	Engagement (hours)			
Face-to-Face Learning				
Lecture	14			
Practical	28			
	Total 42			
Self-Directed Learning				
Preparation of Assignment	10			
Preparation of Mid Quiz	10			
Preparation of presentation	5			
Preparation of Quiz	10			
Engagement in Group Projects	20			
Formal Assessment				
Continuous Assessment	14			
Final Quiz	1			
Total	112			

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE	SCHEDULE
Week-1	Introduction to MATLAB and short brief regarding the activities and contents of the sessional
Week-2	Linear, Quadratic, Newton's Divide Difference Interpolating Polynomials
Week-3	Graphical Method, Bisection Method, False-Position Method.
Week-4	The trapezoidal rule, Simpson's Rule, and Integration with Unequal Segments.
Week-5	Simple Fixed Point Iteration, Newton-Raphson Method, Secant Method, System of Nonlinear Equations.
Week-6	Numerical Differentiation, Richardson's extrapolation
Week-7:	Forward, backward, and central divide difference formula.
Week-8	Solving ODE, Euler's Method, Heun's Method
Week-9	Runge-Kutta Methods for lower and higher order, and Adaptive RK Method
Week-10	Boundary Value Problems, Eigen Value Problems
Week-11	Gauss Elimination, Gauss-Jordan, LU Decomposition, Matrix Inverse, Gauss-Seidel
Week-12	Solving Partial Differential Equations

Week-13	Viva
Week-14	Lab Quiz

ASSESSMENT STRATEGY					
	Assessment Method	Grading			
Continuous	Class Performance	20%			
Assessment (40%)	Attendance	10%			
	Assignment	10%			
	Final Lab Quiz	50%			
	Viva	10%			
	Total Marks	100%			
REFERENC	E BOOKS				
1. Applied N	umerical Analysis (5 th edition) – Curtis F. Gerald, Patrick O. whe	atley. 2. Numerical			

Methods for Engineers (4th edition) – Steven C. Chapra, Raymond P. Carale

2. Numerical Method : Using Matlab, Fourth Edition, 2004John H. Mathews and Kurtis D. Fink

Spring Semester L-3, T-I

COURSE INFORMATION							
Course Code	ME 303	Lecture Contact Hours	3.00				
Course Title	Power Plant Engineering	Credit Hours	3.00				
PRE-REQUISITE							
ME-103, Therm	odynamics						
CURRICULUM STRUCTURE							
Outcome Based Education (OBE)							

SYNOPSIS/RATIONALE

Apply knowledge of mechanical engineering related to power generation systems, their control and economics in different types of power plants for their operation and maintenance.

OBJECTIVE

1. To introduce students to different aspects of power plant engineering.

2. To familiarize the students with the working of power plants based on different fuels.

3. To expose the students to the principles of safety and environmental issues.

LEAR	LEAKNING OUTCOMES & GENERIC SKILLS						
No.	Course Outcome	Correspond ing PO	Bloom's Taxonomy	KP	СР	C A	Assessmen t Methods
CO1	Analyze economics of power plants, list factors affecting the power plants, interpret the performance of power plants based on load variations and global energy situation.	1,2	C1,C2	2			Q, ASG, F
CO2	Apply the basic thermodynamics and fluid flow principles to different power generation methods.	1	C3	3			Q, ASG, F
CO3	Analyze thermodynamic cycles, construction, working and significance of, Hydro power plants, Steam power plants, Nuclear power plants, Gas Turbine power plants, and Diesel power plants.	2,12	C2, C4	3,	1,2		Q, ASG, F
CO4	Comprehend different solutions to improve the energy efficiency of power plants, pollution problems from thermal power plants and its control methods.	2,7	C2, C4	4,7			Q, ASG, F
(CP- 0	Complex Problems, CA-Complex A	ctivities, KP-k	Knowledge Pr	ofile,	T – Te	st; PR	R – Project;
Q - Q	uiz; ASG – Assignment; Pr – Prese	ntation; R - Re	port; F – Fina	al Exa	m)		-

COURSE CONTENT

a. Main Contents:

Economics of Power Generation, Thermal Power Plant, High Pressure Boilers, Coal and Ash Handling Systems, Draught System, Steam turbine, Feed Water Treatment, Gas turbine, Nuclear Power Plant, Hydro-electric power plant, Alternative Power Plant Technologies.

b. Detail Contents:

Introduction: Power and energy, sources of energy, review of thermodynamic cycles related to power plants, fuels and combustion calculations. Load estimation, load curves, various terms and factors involved in power plant calculations. Effect of variable load on power plant operation, Selection of power plant. Power plant economics and selection: Effect of plant type on costs, rates, fixed elements, energy elements, customer elements and investor's profit; depreciation and replacement, theory of rates. Economics of plant selection, other considerations in plant selection.

Steam power plant: General layout of steam power plant, Power plant boilers including critical and super critical boilers. Fluidized bed boilers, boilers mountings and accessories, Different systems such as coal handling system, pulverizes and coal burners, combustion system, draft, ash handling system, Dust collection system, Feed water treatment and condenser and cooling towers and cooling ponds, Turbine auxiliary systems such as governing, feed heating, reheating, flange heating and gland leakage. Operation and maintenance of steam power plants, heat balance and efficiency, Site selection of a steam power.

Diesel power plant: General layout, Components of Diesel power plant, Performance of diesel power plant, fuel system, lubrication system, air intake and admission system, supercharging system, exhaust system, diesel plant operation and efficiency, heat balance, Site selection of diesel power plant, Comparative study of diesel power plant with steam power plant.

Gas turbine power plant: Layout of gas turbine power plant, Elements of gas turbine power plants, Gas turbine fuels, cogeneration, auxiliary systems such as fuel, controls and lubrication, operation and maintenance, Combined cycle power plants, Site selection of gas turbine power plant.

Nuclear power plant: Principles of nuclear energy, Lay out of nuclear power plant, Basic components of nuclear reactions, nuclear power station, Nuclear waste disposal, Site selection of nuclear power plants. Hydro-electric station Hydrology, Principles of working, applications, site selection, classification and arrangements, hydro-electric plants, run off size of plant and choice of units, operation and maintenance, hydro systems, interconnected systems.

Non-Conventional Power Plants: Introduction to non-conventional power plants (Solar, wind, geothermal, tidal) etc.

Plant safety and environmental impact of power plant: Social and Economic issues of power plant- Oxides of sulphur- oxides of carbon-oxides of nitrogen, air and water pollution from thermal power plants and its control, Thermal pollution from thermal power plants, noise pollution and its control, natural and artificial radio activity nuclear power and environmentradiations from nuclear power plant effluents- high level wastes- methods to reduce pollution, global warming- its effects and control, standardization for environmental pollution

			PROGRAM OUTCOMES (PO)											
No.	Course	Course Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Analyze economics of power plants, list factors affecting the power plants, interpret the performance of power plants based on load variations and global energy situation.		3	3										
CO2	Apply the basic thermodynamics and fluid flow principles to different power generation methods.		3											
CO3	Analyze thermodynamic cycles, construction, working and significance of, Hydro power plants, Steam power plants, Nuclear power plants, Gas Turbine power plants, and Diesel power plants.			3										3
CO4	Comprehend different solutions to improve the energy efficiency of power plants, pollution problems from thermal power plants and its control methods.			3					2					
Justificati	on for CO-PO m	apping:												
Mapping	Correspond ing Level of matching				J	ust	ific	atio	n					
CO1-PO1	3	Analyzing econo mathematics and	omic eng	s of	f po ring	wei fur	r pl idar	ant nen	s w tals	'ill r	requi	ire kn	owled	lge of
CO1-PO2	3	Students will be interpret the per- and global energy	able form y sit	e to nanco uatio	anal e of on.	yze po	the wer	e ec [.] pla	onc ants	mic: bas	s of ed c	powe on loa	r plan d var	ts and iations
CO2-PO1	3	To apply the base of mathematics, i	ic th	erm ral s	odyı cien	nam ce a	nics. and	, stu eng	ider jine	nts w ering	vill r g fun	equire dame	e knov ntals.	vledge
CO3-PO2	3	Students will be different kinds of	able pov	e to a wer j	analy plan	yse t pro	dif oble	fere ems	nt t	hern	nody	namio	e cycl	es and
CO3-PO12	2 3	Students will ga various power p area.	in k lants	s tha	vledg at su	ge a ippo	abo ort	ut v eng	vari inee	ous ering	desi g des	gn pa sign i	n a p	ters of ractice
CO4-PO2	3	Students will be	able	to a	naly	se p	ow	er p	olan	t eff	icier	ncy.		
CO4-PO7	2	Students will le plants and their c	arn ontr	abo ol m	ut p netho	ollı ods.	utio	npr	oble	ems	fror	n the	rmal	power

TEACHING LEARNING STRATEGY				
Teaching and Learning Activities	Engagement (hours)			
Face-to-Face Learning				
	42			
Self-Directed Learning	75			
Formal Assessment	5.5			
Total	122.5			
TEACHING METHODOLOGY				
Class Lecture, Pop quiz, Case study, Problem solving				

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
Lec 1-5	Power and energy, sources of energy, review of thermodynamic cycles related to power plants, fuels and combustion calculations. Load estimation, load curves, various terms and factors involved in power plant calculations. Effect of variable load on power plant operation, Selection of power plant. Power plant economics and selection: Effect of plant type on costs, rates, fixed elements, energy elements, customer elements and investor's profit; depreciation and replacement, theory of rates. Economics of plant selection, other considerations in plant selection.	CT-1	
Lec 6-18	Steam power plant: General layout of steam power plant, Power plant boilers including critical and super critical boilers. Fluidized bed boilers, boilers mountings and accessories, Different systems such as coal handling system, pulverizes and coal burners, combustion system, draft, ash handling system, Dust collection system, Feed water treatment and condenser and cooling towers and cooling ponds, Turbine auxiliary systems such as governing, feed heating, reheating, flange heating and gland leakage. Operation and maintenance of steam power plants, heat balance and efficiency, Site selection of a steam power plant.		
Lec 19-22	Diesel power plant: General layout, Components of Diesel power plant, Performance of diesel power plant, fuel system, lubrication system, air intake and admission system, supercharging system, exhaust		

				CT-3			
Lec 31-36	Nuclear pow Lay out of r of nuclear re waste dispo plants. Hydro of workin classification plants, run o operation a interconnecte	ar energy, omponents n, Nuclear ear power Principles selection, ro-electric e of units, systems,					
Lec 37-42	Non-Convent non-conventi geothermal, t Plant safety plant: Social Oxides of nitrogen, air plants and thermal powe natural and and environ plant effluen pollution, gli standardizati	luction to ar, wind, of power wer plant- oxides of mal power tion from its control, ear power ear power s to reduce ad control, n.					
	STRATEGY						
ASSESSMENT S		COs Assessment Method (100%)					
ASSESSMENT S	COs	Assessment Method Class Assessment	(100%)	Remarks			
ASSESSMENT S	CO 1 CO 1 CO 2 CO 3 CO 4	Assessment Method Class Assessment Class Observations/Assignments	(100%) 20 20 20 20 20	Remarks			
ASSESSMENT S	CO 1 CO 1 CO 2 CO 3 CO 4	Assessment Method Class Assessment Class Observations/Assignments Exam	(100%) 20 20 20 20 20	Remarks			

REFERENCE BOOKS

- 1. Power Plant Technology M M. El-Wakil
- 2. Power Plant Engineering –by Nag P K
- 3. Power Plant Engineering Frederick T. Morse

REFERENCE SITE

N/A

Spring Semester L-3, T-I

COURSE INFORMATION							
Course Code	ME 304	Lecture Contact Hours	: 3.00				
Course Title	Power Plant Sessional	Credit Hours	: 1.50				
PRE-REQUISI	TE						
ME 303							
CURRICULUM STRUCTURE							

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This is the foundation unit in the study of power plants. The students are introduced to fundamental theories and techniques required to analyze the safety and usage of power plants along with their working principles. This knowledge will allow students to perform the engineering calculations required in the power plant field.

OBJECTIVE

1. To comprise a wide range of power engineering subjects

2. To focus on theoretical and practical training.

3. To equip with quality to design, operate and maintain the various parts of a power plant along with environmental safety associated with it.

LEAF	LEARNING OUTCOMES & GENERIC SKILLS						
No.	Course Outcome	Correspond ing PO	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Relate between advanced knowledge of thermodynamics and the key features of a power plant.	1	Р5			1	R, Q, LT
CO2	Illustrate thermodynamic cycles in practical and to investigate theoretical and actual efficiencies.	1	Р3			1	R, Q, LT
CO3	Construct and know the solutions to improve the energy efficiency of power plants.	7,8	C4, C5			7	R, Q, LT
CO4	Develop knowledge of power plant equipment's and Environmental safety.	4	P1			3	R, Q, LT
(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, LT – Lab Test, PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)							
COUR	RSE CONTENT						

Experiments:

- 1) Study of Boiler
- 2) Performance Test of Cooling Tower
- 3) Study of Steam Turbine
- 4) Study of Gas Turbine (Jet) Engine
- 5) Determination of carbon residue of a given fuel
- 6) Proximate Analysis of coal
- 7) Determination of the calorific value of fuel
- 8) Determination of calorific value of gaseous fuel by gas calorimeter

												<u>.</u>			
No		Course Learning Outo	ome	PROGRAM OUTCOMES (PO)											
110.		Course Learning Oute	OIIIC	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Rel kno the	ate between wledge of thermodyna key features of a power	advanced mics and plant.	3											
CO2	Illu prac theo	strate thermodynamic ctical and to in pretical and actual effici	cycles in ivestigate iencies.	3											
CO3	Con to in pow	onstruct and know the solutions improve the energy efficiency of wer plants.							2	3					
CO4	Develop knowledge of power plant equipment's and Environmental safety.						3								
Justifica	tion	for CO-PO mapping:			1				1	<u> </u>					
Mappin	g	Corresponding Level of matching					Jı	usti	fica	tior	1				
CO1-PO	1	3	In order fundame	to ntal	id knov	entif wled	fy 1 ge c	the of ei	ba ngin	sics	of ingw	po [,] ould	wer be re	plants equire	s, a d.
CO2-PO	1	3	In order to perform the experiments, a fundamental knowledge of diagrams and efficiencies would be required												
CO3-PO7 2 In order of energy			In order of energy	to so v eff	olve icien	the cy, j	pow poll	ver utio	plar n.	nt pi	roble	ems,	the k	nowle	edge

CO3-PO8	3	Studying different areas of power plants, the students will have enough ethical knowledge about the decisions making of different types of power plants.				
CO4-PO4	3	For performing the experiments, safety is needed in this laboratory				
TEACHING I	LEARNING STRATEG	Y				
Teaching and	Learning Activities		Engagement (hours)			
Face-to-Face	Learning					
Lectur	re		14			
Practio	cal		28			
	Total 42					
Self-Directed Learning						
Prepar	ration of Lab Reports		10			
Prepar	ration of Lab Test		10			
Prepa	aration of presentation		5			
Prepa	aration of Quiz		10			
Enga	gement in Group Projec	ets	20			
Formal Asses	sment					
Contir	nuous Assessment		14			
Final	Quiz		1			
Total 112						
TEACHING METHODOLOGY						
Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method						

COURSE	COURSE SCHEDULE						
Week-1	Introduc	tion class					
Week-2	Exp 1: S	tudy of Boiler					
Week-3	Exp 2: P	erformance Test of Cooling Towe	r				
Week-4	Exp 3: S	tudy of Steam Turbine					
Week-5	Exp 4: S	tudy of Gas Turbine (Jet) Engine					
Week-6	Mid Terr	m Quiz					
Week-7	Exp 5: D	etermination of carbon residue of	a given fuel (proposed)				
Week-8	Exp 6: P	roximate Analysis of coal (propos	ed)				
Week-9	Exp 7: D	etermination of the calorific value	e of fuel (proposed)				
Week-10	Exp 8: D	etermination of calorific value of	gaseous fuel by gas calorimeter (proposed)				
Week-10	Revision Class						
Week-11	Final Lab Report Submission						
Week-12	Lab Test						
Week-13	Viva						
Week-14	Quiz Tes	st					
		Component	Grading				
Contin	iuous	Lab participation and Report	30%				
Assessment (60%)		Labtest-1, Labtest-2 30%					
		Lab Quiz	40%				
	,	Total Marks 100%					

REFERENCE BOOKS

- 1. "Power Plant Engineering" by Derbal L F and Boston P G
- 2. "Power Plant Performance" by Gill A B
- 3. "Power Plant Engineering" by Nag

Spring Semester L-3, T-I

COURSE INFORMATION

Course Title	: Fluid Mechanics-I	Credit Hours	: 3.00					
PRE-REQUISITE								

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course provides a prologue to the concepts and standards of fluid mechanics of mechanical systems and to introduce the students to different Fluid flow patterns and the fundamental flow cases such as free shear flows, Specific applications of these flow cases are then given through the study of internal flow systems and external flows around air, ground and sea-going vehicles. The focus is to illustrate practical engineering applications of these principles comparable to simple fluid systems. The learning approach is to apply engineering principles to performance analysis and forecast of simple fluid systems. Students will achieve comprehension of the fundamental hypothetical premise of the fluid mechanic sciences and their application to a scope of issues of pertinence to practical engineering

OBJECTIVE

- 1. To familiarize students with the essential ideas of fluid mechanics.
- 2. To make students acquainted with the numerical depiction of fluid flow.
- 3. To familiarize students with the conservation principles governing fluid streams.
- 4. Ability to solve inviscid flow problems using stream functions and velocity potentials
- 5. Be able to compute forces on bodies in liquid flows.
- 6. To solve (analytical and numerical) viscous flow problems.

LEAF	RNING OUTCOMES & GEN	NERIC SKILLS					
No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Identify how properties of fluids change with temperature and their effect on pressure and fluid flow and define the relationship between pressure and elevation as it relates to manometers, barometers and other pressure measuring devices	1,2	C1, C2, C3	1,4, 6			Q, ASG, F
CO2	Calculate forces on a plane and buoyancy on a body submerged in a static fluid and analyze performance and frictional losses in pipe system	2,3	C2, C3	2,5, 6			Q, ASG, F
CO3	Clear understanding of general energy equation to calculate changes in fluid flow for circular and non-circular pipes for in-compressible fluids and demonstrate knowledge on different types of flows and determine sonic velocity in a fluid	1,2	C2, C3, C4	1,3	1,2		Q, F, CS
CO4	Use the general energy equation to calculate changes in fluid flow for circular and non-circular pipes for in-compressible fluids	2,3	C3, C4	4,6	1,2		Q, F, CS

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- 1. Fundamental concept
- 2. Fluid statics: basic hydrostatic equation
- 3. Incompressible and compressible fluids
- 4. Manometers
- 5. Momentum and energy equations
- 6. Velocity and flow measurement devices

b. Detail Contents:

Fundamental concept of fluid as a continuum; Fluid statics: basic hydrostatic equation, pressure variation in static incompressible and compressible fluids; Manometers; Forces on plane and curved surfaces, Buoyant force; control volume approach; Continuity, momentum and energy equations (Bernoulli's and Euler's Equation); Special forms of energy and momentum equations and their applications; Pressure, velocity and flow measurement devices.

No	Course Outcome	PROGRAM OUTCOMES (PO)											
110.	Course Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Identify how properties of fluids change with temperature and their effect on pressure and fluid flow and define the relationship between pressure and elevation as it relates to manometers, barometers and other pressure measuring devices	3	3										
CO2	Calculate forces on a plane and buoyancy on a body submerged in a static fluid and analyze performance and frictional losses in pipe system	2	3										

CO3	Clear understanding of general energy equation to calculate changes in fluid flow for circular and non- circular pipes for in-compressible fluids and demonstrate knowledge on different types of flows and determine sonic velocity in a fluid	3	2						
CO4	Use the general energy equation to calculate changes in fluid flow for circular and non-circular pipes for in-compressible fluids		2	1					

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level of Matching	Justification
CO1-PO1	3	Students will be able to know about the properties of fluids. Students will get clear theoretical knowledge about pressure measuring devices and by using these devices they can measure the fluid pressure.
CO1-PO2	3	Students will develop the ability to illustrate a relationship between pressure and elevation. The relationship relates to manometers, barometers and other pressure measuring devices which are essential in fluid mechanics.
CO2-PO1	2	Students get definition of buoyancy, buoyant force, submerged body, metacentre, metacentric height and other terms of fluid mechanics.
CO2-PO2	3	Students will be able to determine forces on a plane and buoyancy on a body submerged in a static fluid.
CO3-PO1	3	The students will attain the knowledge to understand energy equation
СОЗ-РО2	2	Students will have an ability to calculate the change in different dimensional flow in pipes
CO4-PO2	2	Students will learn the Bernoulli's Equation and Continuity

		Equation.							
CO4-PO3	1	They will be able to use the Bernoulli's equation (energy equation) to compute and analyse the changes in fluid flow for circular and non-circular pipes for in-compressible fluids.							
TEACHING LEARNING STRATEGY									
Teaching and L	earning Activities		Engagement (hours)						
Face-to-Face Learning									
			42						
Self-Directed L	earning		75						
Formal Assessn	nent		5.5						
Total	Total 122.5								
TEACHING METHODOLOGY									
Class Lecture, F	Pop quiz, Case stu	dy, Problem solving							

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
Class 1-12	Fundamental concept of fluid as a continuum; Fluid statics: basic hydrostatic equation, pressure variation in static incompressible and compressible fluids;	CT 01	
Class 13-21	Buoyant force; control volume approach; Continuity, momentum Equation, Energy equations (Bernoulli's and Euler's Equation);	CT 02	
Class 22- 27	Energy equations (Bernoulli's and Euler's Equation);	MT	
Class 28- 36	Manometers; Forces on plane and curved surfaces	MT	
Class 37-39	Special forms of energy and momentum equations and their applications	CT 03	

Class 40-42	Pressure,Ve devices.;	locity and flow measurer	nent		
	JIMILO	•			
	COs	Assessment Method	(100%)	Remarks]
		Class Assessme	ent		
	1	СТ	20		
	3	СТ	30		
	4	CT	30		
		Exam			
	1	MID, Final Exam	80		•
	2	Final Exam	100		
	3	MID, Final Exam	70		
	4	Final Exam	70		
REFERENCE	BOOKS				
1.Fluid Mechani	cs: Fundame	ntals and Applications- J	ohnCimbala	ı, Yungus A.	Cengel

2. Fluid Mechanics and Hydraulic Machines- R.K. Rajput

3. Fluid mechanics through worked out problems -Md. Quamrul Islam and Amalesh Chandra Mandal.

Fall Semester L-3, T-II

COURSE INFORMATION										
Course Code	ME-323	Lecture Contact Hours	2.00							
Course Title	Fluid Mechanics-II	Credit Hours	2.00							
PRE-REQUIS	ITE									
ME-321										
CURRICULU	M STRUCTURE									
Outcome Based	Education (OBE)									
SYNOPSIS/RA	TIONALE									
This curriculum	n is designed to give all students i	in the program proficiency	in fluid mechanics as							
well as the math	nematical, experimental and compu	itational tools needed to wo	rk in these disciplines.							
It is also design	ed to provide students with the opp	portunity to pursue in-depth	study in each of these							
broad discipline	es.									

OBJECTIVE

- 1. To explain the concepts and definitions used in fluid mechanics.
- 2. To apply fundamental concepts and equations to practical problems.
- 3. To apply analytical cognitive skills and problem-solving skills in fluid mechanics

1. LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assess ment Metho ds
CO1	Understand the fundamental relations of compressible flow.	1		4			Q, ASG, F
CO2	Solve complex problems using the theory of converging and diverging nozzles.	2		2,4			Q, ASG, F
CO3	Understand and Estimation of Boundary Layer and Momentum Thickness	3		4			Q, F, CS
CO4	Demonstrate Knowledge on open channel flows	7		6	1,2		Q, F, CS

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

a. Main Contents:

- i. Dimensional analysis and similitude
- ii. Fundamental relations of compressible flow
- iii. Speed of sound wave
- iv. Flow through converging-diverging nozzles
- v. Normal shock; Real fluid flow; Frictional losses in pipes and fittings
- vi. Introduction to boundary layer theory; Estimation of boundary layer and momentum

thickness

- vii. Skin friction and drag of a flat plate. Introduction to open channel flow
- viii. Best hydraulic channel cross-sections; Hydraulic jump; Specific energy; Critical depth.

b. Detail Contents:

Dimensional analysis and similitude; Fundamental relations of compressible flow; Speed of sound wave; Stagnation states for the flow of and ideal gas; Flow through converging-diverging nozzles; Normal shock; Real fluid flow; Frictional losses in pipes and fittings. Introduction to boundary layer theory; Estimation of boundary layer and momentum thickness; Skin friction and drag of a flat plate. Introduction to open channel flow; Best hydraulic channel cross-sections; Hydraulic jump; Specific energy; Critical depth.

No		Course Learning (Jutaama			PI	ROC	GRA	Μ	OU	TCC	ME	S (PO)	
INO.		Course Learning C	Jutcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Unde relat	erstand the ions of compressib	fundamental le flow.	3											
CO2	Solv theor nozz		3												
CO3	Understand and Estimation of Boundary Layer and Momentum Thickness					3									
CO4 Demonstrate Knowledge on open channel flows									3						
Justific	ation	for CO-PO mapp	ing:	<u> </u>			<u> </u>								
Justifica Mappin	ation : ng	for CO-PO mapp Corresponding Level of matching	ing:				Ju	stifi	cati	ion					
Justifica Mappin CO1-P	ation : ng PO1	for CO-PO mapp Corresponding Level of matching 3	ing: Students will compressible	l be flov	able w.	e to 1	Jus	s tifi ersta	cat i and	i on the	fune	dame	ental 1	relatio	ons of
Justifica Mappin CO1-F	ation and a statements of the statement	for CO-PO mapp Corresponding Level of matching 3 2	ing: Students will compressible Students will of convergin	l be flov l be g and	able w. able d div	to solvergi	Ju: unde olve	stifi ersta	cati and mpl	the	fund	dame	ental 1 using	relations the t	ons of theory
Justifica Mappin CO1-F CO2-F CO3-F	ation and a second seco	for CO-PO mapp Corresponding Level of matching 3 2 3	Students will compressible Students will of convergin Students wi Thickness	l be flov l be g and ll le	able w. able d div earn	to so to so vergi abo	Jus unde olve ing 1 out	stifi ersta e con nozz Bor	cati and mpl zles und	the ex p ary	fund probl Lay	dame lems /er a	ental 1 using and 1	relations the state of the stat	ons of theory entum
Justifica Mappin CO1-F CO2-F CO3-F	ation : ng PO1 PO2 PO3 PO7	for CO-PO mapp Corresponding Level of matching 3 2 3 3 3	ing: Students will compressible Students will of convergin Students wi Thickness Students will	l be flov l be g and ll le	able w. able d div earn	to sovergi abo	Ju: undo olve ing 1 out	ersta e con nozz Bor ge o	cati and mpl zles und	the ex p ary	fund probl Lay char	dame ems /er	ental 1 using and 1 flows	relations the state of the stat	ons of theory entum
Justifica Mappin CO1-P CO2-P CO3-P CO4-P TEACH	ation and a second seco	for CO-PO mapp Corresponding Level of matching 3 2 3 LEARNING STR	ing: Students will compressible Students will of convergin Students wi Thickness Students will RATEGY	l be flov l be g and ll le	able w. able d div earn her k	e to to s vergi abo	Just unde olve ing 1 out	stifi ersta e con nozz Bor ge o	cati and mpl zles und	ion the ex p ary pen	fund probl Lay char	dame lems /er a	ental r using and l flows	relations the state of the stat	ons of theory entum
Justifica Mappin CO1-F CO2-F CO3-F CO3-F CO4-F TEACH Teachin	ation and a second seco	for CO-PO mapp Corresponding Level of matching 3 2 3 2 3 LEARNING STR Learning Activitie	ing: Students will compressible Students will of convergin Students wi Thickness Students will ATEGY s	l be e flov l be g and ll ld	able w. able d div earn her k	to s vergi abo	Ju: undo olve ing 1 out	stifi ersta e con nozz Bor ge o	cati and mpl zles und	the ex p ary	fund probl Lay	dame ems /er a nnel : Enga	ental 1 using and 1 flows	relations the state of the stat	ons of theory entum ours)

Self-Directed Learning	70					
Formal Assessment	6					
Total	104					
TEACHING METHODOLOGY						
Class Lecture, Pop quiz, Case study, Problem solving						

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
Class 1-5	Dimensional analysis and similitude; Fundamental relations of compressible flow; Speed of sound wave	CT 01	
Class 6-10	Stagnation states for the flow of and ideal gas; Flow through converging-diverging nozzles; Normal shock	CT 02	
Class 11-14	Real fluid flow; Frictional losses in pipes and fittings. Introduction to boundary layer theory	CT 03	
Class 15-19	Estimation of boundary layer and momentum thickness	МТ	
Class 20-23	Skin friction and drag of a flat plate. Introduction to open channel flow		
Class 24-28	Best hydraulic channel cross-sections; Hydraulic jump; Specific energy; Critical depth		

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessmen	nt	
CO1	СТ	20	
CO2	СТ	30	
CO3	СТ	20	
CO4	СТ	30	
	Exam		
CO1	Mid, Final	80	
CO2	Mid, Final	70	
CO3	Mid, Final	80	
CO4	Mid, Final	70	

REFERENCE BOOKS

- Fluid Mechanics with Engineering Applications–Robert L. Daugherty, Joseph B. Franzini, E. John
- ii. Fluid Mechanics Frank M. White.
- iii. Fluid Mechanics Through Worked out Problems- A.C. Mandal& M.Q. Islam

REFERENCE SITE

N/A

Fall Semester L-3, T-II

COURSE INF	ORMATION		
Course Code	ME 324	Contact Hours	: 3.00
Course Title	Fluid Mechanics Sessional	Credit Hours	: 1.50
PRE-REQUIS	ITE		
ME 321, ME 3	23		
CURRICULU	M STRUCTURE		
Outcome Based	Education (OBE)		

SYNOPSIS/RATIONALE

The course is designed to illustrate practical engineering applications of fluid mechanics principles in relation to simple fluid systems. The learning approach is to apply engineering principles to performance analysis and prediction of simple fluid systems. This will provide a basis for understanding how performance can be improved.

OBJECTIVE

1. This course provides an introduction to the principles of fluid mechanics of mechanical systems.

2. The focus is to illustrate practical engineering applications of these principles in relation to simple fluid systems.

3. By the end of this course students should be able to understand the basic principles and analysis of both static and dynamic fluid systems.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Correspondin g PO	Bloom's Taxonomy	СР	CA	KP	Assess ment Method s
CO1	Identify how properties of fluids change with temperature and their effect on pressure and fluid flow.	1	Р3			1	R, Q, LT
CO2	Illustrate practical engineering applications of these principles in relation to simple fluid systems.	1	P2			1	R, Q, LT
CO3	Evaluate and design fluid engineering systems	2	Р5			5	R, Q, LT
CO4	Build simple solutions to a range of problems in basic fluid flows.	4	C6			3	R, Q, LT

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, LT – Lab Test, PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Experiments:

Expt-01: Verification of Bernoulli's Equation

Expt-02: (a) Calibration of rectangular notch

(b) Calibration of triangular notch (V notch)

Expt-03: Study of flow through an Orifice meter and Venturi Meter (Combined)

Expt-04: Study of Pipe friction (Merged with below two)

(b) Determination of Pressure losses in different types of elbows (Different types of pipe bent)

Expt-05: (a) Introduction to Centrifugal Pump Characteristics (Merged with below three)

(b) Performance test of a single centrifugal pump

© Performance test of centrifugal pumps connected in series

(d) Performance test of centrifugal pumps connected in parallel

Expt-06: (a) Study of Propeller Turbine Characteristics

(b) Performance test of a Pelton wheel and Francis Turbine.

Expt-07: Study of Wind Tunnel

Expt-08: Study of the Pump Test Bench Arrangement

Expt-09: Study of compressors (Single Stage and Multistage) and Blowers

Exp-10: Study of various pumps used in automotive engines.

Expt-11: Study of Pneumatic and Hydraulic control system

Exp-12: Case Study of the Hydraulic Circuit Diagram for Injection molding and Fatigue testing.

Exp-13: Study of Pumps and attachments used in Firefighting systems

						Pl	ROC	GR/	M	OU	TCC)ME	S (PO))	
No.		Course Learning O	utcome	1	2	3	4	5	6	7	8	9	10	1 1	12
CO1	Ide cha effe	entify how propertieninge with temperature ect on pressure and flue	es of fluids re and their uid flow.	3											
CO2	2 Illustrate practical engineering applications of these principles in relation to simple fluid systems.		3												
CO3	Evaluate and design fluid engineering systems			3											
CO4	CO4 Build simple solutions to a range of problems in basic fluid flows.						3								
Justifica	atior	n for CO-PO mappin	ng:												
Mappin	ıg	Corresponding Level of matching					Ju	stif	icat	tion					
CO1-PC)1	2	In order to identify the basics of fluid mechanics, knowledge o fluid dynamics principles would be required.						lge of						
		3	In order to fluid dynam	iden ics j	tify orinc	the t	s wo	bulc	l be	req	uirec	1. 1.	es, kno	5 10 100	
CO2-PC	D1	3	In order to fluid dynam In order to applications systems know	iden iics j o pe s of owle	tify princ erfor the dge	the b tiple m t se j wou	he prind	exp exp cipl e re	l be erir es quii	req nen in red	uirec ts, p relat	l. pract	cs, kno ical e to sin	ngine	eering fluid
CO2-PC)1)2	3	In order to a fluid dynamical	iden iics j o pe s of s of sol sol of fl	tify princ erfor the dge ve a uid r	the body the body the body the body tensor t	he prin ld b desi	$\frac{1}{2} \frac{1}{2} \frac{1}$	$\frac{1}{2} \frac{1}{2} \frac{1}$	req nen in red uid quir	uirection ts, prelation engred.	ion	ical e to sin	ngino nple ysten	eering fluid

TEACHIN	IG LEARNING STRATEGY				
Teaching a	nd Learning Activities	Engagement (hours)			
Face-to-Fac	ce Learning				
Lec	ture	14			
Pra	ctical	28			
		Total 42			
Self-Direct	ed Learning				
Prej	paration of Lab Reports	10			
Prej	paration of Lab Test	10			
Pro	eparation of presentation	5			
Pre	eparation of Quiz	10			
En	gagement in Group Projects	20			
Formal Ass	essment				
Cor	ntinuous Assessment	14			
Fina	al Quiz	1			
Total		112			
TEACHIN	G METHODOLOGY				
Lecture follo Based Metho	owed by practical experiments and discussion, Co-operative and Colla	borative Method, Project			
COURSE	SCHEDULE				
Week-1	Expt-01: Verification of Bernoulli's Equation				
Week-2	Expt-02: (a) Calibration of rectangular notch				
	(b) Calibration of triangular notch(V notch)				
Week-3	Expt-03: Study of flow through an Orifice meter and Venturi Me	eter (Combined)			
Week-4	Expt-04: Study of Pipe friction (Merged with below two)				
	(b) Determination of Pressure losses in different types of elbows pipe bent)	s (Different types of			
Week-5	Expt-05: (a) Introduction to Centrifugal Pump Characteristics (M three)	Merged with below			
	(b) Performance test of a single centrifugal pump				
	© Performance test of centrifugal pumps connected in series				

	(d) Performance test of centrifugal pumps connected in parallel
Week-6	Expt-06: (a) Study of Propeller Turbine Characteristics
	(b) Performance test of a Pelton wheel and Francis Turbine.
Week-7	Expt-07:Study of Wind Tunnel
Week-8	Expt-08: Study of the Pump Test Bench Arrangement
Week-9	Expt-09: Study about, compressor (Single Stage and Multistage) and Blowers
Week-10	Exp-10: Study of different pumps used in automotive engines.
Week-11	Expt-11:Study of Pneumatic and Hydraulic Fluid Power
Week-12	Exp-12: Case Study of the Hydraulic Circuit Diagram for Injection molding and
	Fatigue testing.
Week-13	Exp-13: Study of Firefighting Pumps and attachments
Week-14	Quiz Test

Assessment Strategy	Assessment Strategy								
	Component	Grading							
	Lab participation and Report	30%							
Continuous Assessment (60%)	Labtest-1, Labtest-2]30%							
	Lab Quiz	40%							
	Total Marks	100%							

REFERENCE BOOKS

- 1. Fluid Mechanics-1 by Victor, L. Streeter.
- 2. Fluid Mechanics: Fundamentals and Applications by Yunus A. Cengel, John Cimbala.
- 3. Fluid Mechanics Through Worked out Problems- A.C. Mandal & M.Q. Islam

Fall Semester L-3, T-II

COURSE INFORMATION

Course Code Course Title	ME-341 Machine Design	Contact Hours Credit Hours	3.00 3.00
PRE-REQUIS	ITE		
ME 343, ME 24	47		

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course aims to analyze the stresses and deflections due to various loading. It also investigates specific design problems through the application of the theory of elasticity, failure criteria, energy approach, and numerical methods. This course also intends to incorporate the information that the student has gained earlier in their program and to focus the student's analytical skills towards amalgamation of arrangements by working through the design of several simple, commonly used devices

OBJECTIVE

- 2. To analyze the failure resulting from static and variable loading
- 3. To apply the fundamentals of the theory of failure and stress analysis to design machine components
- 4. To introduce the design modifications to be considered for ease of manufacturing
- 5. To develop an ability to design a system, component, or process to meet desired needs within realistic constraints

LEARN	ING OUTCOMES & GENERIC SK	ILLS					
No.	Course Outcome	Correspondi ng PO	Bloom's Taxonom y	KP	СР	CA	Assess ment Metho ds
CO1	Demonstrate knowledge of selecting factor of safety for various materials and under different loading type.	2,3	C3	2,4			Q, ASG, F

CO2	Analyze failure resulting from static loading and fatigue failure due to variable load.	1,2	C4	4		Q, F, CS
CO3	Apply the fundamentals of the theory of failure and stress analysis to design machine components.	1,3	C3	6	1,2	Q, F, CS
CO4	Design mechanical springs, couplings, gears, belts, springs, brakes, clutches and engine parts.	2,3	C5,C6	2,4,5	1,2	Q, ASG, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

a. Main Contents:

Introduction to design: Beam design, Column design; Statistical considerations; Types of fits;Design for static strength; Design for fatigue strength; Fracture mechanics in design; Design of mechanical springs; Bearings; Gears, shafts,Rope, belt, and chain drives; Brakes; Design for Stability; Finite element analysis

b. Detail Contents:

Introduction to design; Stress analyses, Stress concentration analysis; Deflection and stiffness considerations;Shock and impact; Beam design, Column design; Statistical considerations; Types of fits;Design for static strength; Design for fatigue strength; Fracture mechanics in design; Design of screws and welded joints; Design of mechanical springs; Rolling contact bearings,lubrication and journal bearings; Spur, helical, worm and bevel gears, shafts,Rope, belt and chain drives; Brakes; Design for Stability; Some FEA analysis of designs.

		PROGRAM OUTCOMES (PO)														
No.		Course Learning (Dutcome	1	2	3	4		6	7	8	9	10	11	12	
CO1	Dem selec mate loadi	constrate knowledg cting factor of safet crials and under dif	e of y for various ferent	1	3	3			0	,	0	7	10	11	12	
CO2	Anal loadi varia	lyze failure resultir ing and fatigue fail able load.	ng from static ure due to	2	3											
CO3	O3 Apply the fundamentals of the theory of failure and stress analysis to design machine components.			2		3										
CO4Design mechanical springs, couplings, gears, belts, springs, bearings, brakes, clutches and engine parts.23																
Justification for CO-PO mapping:																
Mappir	ıg	Corresponding Level of matching	Justifications													
CO1-F	PO2	3	Student can	und	lerst	and	fac	tor	of s	afet	ty fo	for different cases.				
CO1-F	PO3	3	Understandi will enhance	ing f e the	'acto ir er	or of ngin	' saf eeri	ety ng	unc kno	ler (wle	diffe dge	erent	loadi	ng ty	pes	
CO2-F	PO1	2	Students wil loading	l ha	ve a	n ab	oility	y to	ana	alys	e fai	lure	from	stati	С	
CO2-F	PO2	3	Students wil engineering fatigue failu	l be pro re fr	able blen com	e to i ns w vari	ider ith 1 iabl	ntify the e lo	7, fo ana ad	rm lysi	ulate s of	e con stati	nplex c load	ling a	and	
CO3-F	PO1	2	They will be stress and fa	con ilur	npet e an	ent (alys	eno dis	ugh	to	desi	ign s	imp	le syst	tems	from	
CO3-F	PO3	3	Students wil components	l ha	ve k	now	led	ge o	of ho	ow t	to de	esign	mach	nine		
CO4-F	PO3	2	Student will	be a	apt i	n de	sigi	ning	g dif	fer	ent e	engir	neerin	g sys	tems	
CO4-F	204	3	Students will be able to design mechanical springs, couplings, gears, belts, springs, bearings, brakes, clutches to solve engineering problems													
		-	engineering	pro	blen	IS							5 10 50			
TEACI			engineering	pro	blen	IS									_	
TEACH	HING	LEARNING STR	engineering RATEGY	pro	blen	IS					-	Eng		nt (h	01140)	
TEACH Teachin	HING g and	LEARNING STR Learning Activitie	s gears, bens, engineering RATEGY	pro	blen	IS						Enga	ageme	ent (he	ours)	
TEACH Teachin Face-to- Self-Dir	HING and Face	LEARNING STH Learning Activitie Learning	sears, bens, engineering RATEGY	prol	blem	18						Enga	ageme 4 7	ent (he	ours)	
TEACH Teachin Face-to- Self-Din Formal	HING and Face rected Asses	LEARNING STE Learning Activitie Learning Learning sment	RATEGY s	pro	blem	15						Enga	ageme 4 7 5	ent (he 2 5 5	ours)	
TEACH Teachin Face-to- Self-Din Formal Total	HING and Face rected Asses	LEARNING STH Learning Activitie Learning Learning sment	sears, bens, engineering RATEGY		blen							Enga	ageme 4 7 5.	ent (h) 2 5 5	ours)	
TEACHING METHODOLOGY

Class Lecture, Pop quiz, Case study, Problem solving

COURSE SCHEDULE

Lectures	Торіс	СТ	Remarks
Class 1-6	Introduction to design; Stress analyses, Stress concentration analysis; Deflection and stiffness considerations;	CT 01	
Class 7-12	Shock and impact; Beam design, Column design; Statistical considerations; Types of fits;	CT 02	
Class 13-21	Design for static strength; Design for fatigue strength; Fracture mechanics in design; Design of screws and welded joints.	CT 03	
Class 22-27	Design of mechanical springs; Rolling contact bearings,		
Class 28-36	lubrication and journal bearings; Spur, helical, worm and bevel gears, shafts,	MT	
Class 37-42	Rope, belt and chain drives; Brakes; Design for Stability; Some FEA analysis of designs		

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
CO1	СТ	20	
CO2	СТ	30	
CO3	СТ	20	
CO4	СТ	30	
	Exam		
CO1	Mid, Final	80	
CO2	Mid, Final	70	
CO3	Mid, Final	80	
CO4	Mid, Final	70	

REFERENCE BOOKS

1. Shigley, JE & Mischke, CR, Mechanical Engineering Design, McGraw-Hill, 1989.

2. Khurmi, R. S., A Textbook of Machine Design, S Chand, 2005.

3. Mott, RL, Machine Elements in Mechanical Design, Maxwell Macmillan, 1992.

4. Pahl, G & Beitz, W, Engineering Design, Springer-Verlag, 1988.

5. Singh, K, Mechanical Design Principles, Nantel Publications, Melbourne, 1996.

Spring Semester L-3, T-I

COURSE INFORMATION						
Course Code	ME 343	Contact Hours	: 3.00			
Course Title	Mechanics of Solid	Credit Hours	: 3.00			
PRE-REQUIS	TE					
ME-245						
CURRICULU	M STRUCTURE					
Outcome Based Education (OBE)						
SYNOPSIS/RATIONALE						

This course will familiarize students with different kinds of loads and the internal reactions in materials (ductile, brittle, composite) due to the loads. the concept of stress as a tensor quantity is introduced along with the relevant materials properties which relate it to strain. In addition, various loading conditions, i.e. axial, tensile, compressive, bending, shear, torsion etc. are explored with pertinent discussions on associated stress and strain distributions. Thermal and centrifugal stresses are also discussed. The importance of shear force and bending moment diagrams in structural analysis along with the use of Mohr's Circle for principal stress/plane determination are elaborated on. An applied component involving computer modelling of common loading problems in engineering concludes the course.

OBJECTIVE

1. Introduction to the calculations concerned with the mechanical properties of materials.

LEARNING OUTCOMES & GENERIC SKILLS

2. To characterize and calculate the magnitude of combined stresses in individual members and complete structures.

3. To analyse various situations involving structural members subjected to combined stresses by application of Mohr's circle of stress.

4. To calculate and analyse the deflection at any point on a beam subjected to a combination of loads.

No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Understand the types of loads and stress in different loaded members and development of skills to determine them	1,2	C1, C2	1,3			Q, ASG, F

138

CO2	Define the characteristics and calculate the magnitude of minimum safe load and stresses to operate individual members and structures without failure	1,3	C2, C3	2,3			Q, ASG, F
CO3	Calculate the deflection at any point on a beam subjected to a combination of loads and clear understanding of shear force and bending moment diagram	1,2	C1, C2, C3	2,3, 4	1,2		Q, F, CS
CO4	Analysis various situations involving structural members subjected to combined stresses by application of Mohr's circle of stress	3,4	C3, C4	2,3, 4	1,2		Q, F, CS
(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test : PR – Project :							

Q - Quiz; ASG - Assignment; Pr - Presentation; R - Report; CS - Case study, F - Final Exam

COURSE CONTENT

a. Main Contents:

- 1. Stress analysis
- 2. Strain Analysis
- 3. Beams
- 4. Columns
- 5. Various Failure Theories

b. Detail Contents:

Stress analysis: statically indeterminate axially loaded member, axially loaded member, Thermal and centrifugal stresses; Stresses in thin and thick-walled cylinders and spheres, Beams: Shear force and bending moment diagrams; various types of stresses in beams, Flexural formula; Deflection of beams: integration and area moment methods; Introduction to reinforced concrete

beams and slabs, Composite beams, Torsion formula; Angle of twist; Modulus of rupture; Helical springs, Combined stresses: principal stress, Mohr's Circle; Columns: Euler's formula, intermediate column formulas, the Secant formula, Flexure formula of curved beams. Introduction to experimental stress analysis techniques; Strain energy; Failure theories, Failure prediction for impact loading, Computational modelling of mathematical problem using software.

CO-PO MAPPING

No	Course Outcome	PROGRAM OUTCOMES (PO)											
110.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Understand the types of loads and stress in different loaded members and development of skills to determine them	3	2										
CO2	Define the characteristics and calculate the magnitude of minimum safe load and stresses to operate individual members and structures without failure	3		2									
CO3	Calculate the deflection at any point on a beam subjected to a combination of loads and clear understanding of shear force and bending moment diagram	3	2										
CO4	Analysis various situations involving structural members subjected to combined stresses by application of Mohr's circle of stress	3	2										

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING						
Mapping	Level of Matching	Justification				
CO1-PO1	3	The students will learn to identify different types of loads and stresses in loaded members that will enhance their knowledge domain in engineering				

CO1-PO2	2	Application of concept of stress and strain will enable the students to analyse problems arise in various engineering problems
CO2-PO1	3	Students will know how to calculate permissible load, stresses and
СО2-РОЗ	2	Students will be able to design individual members and structures without failures
CO3-PO1	3	Students will be able to point out the deflection at any point in a beam
СОЗ-РО2	2	Students will be able to draw and analyse shear force and bending moment diagram
CO4-PO1	3	The knowledge Mohr's circle will enable students to visualize the relationships between the normal and shear stresses acting on various inclined planes at a point in a stressed body
CO4-PO2	2	Students will be able to analyse and calculate the combined stresses induced in structural members by using Mohr's circle of stresses

TEACHING LEARNING STRATEGY	
Teaching and Learning Activitie	Engagement (hours)
Face-to-Face Learning	
	42
Self-Directed Learning	75
Formal Assessent	5.5
Total	122.5
TEACHING METHODOLOGY	
Class Lecture, Pop quiz, Case study, Problem solving	

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
Class 1-6	Stress analysis: statically indeterminate axially	CT 01	

	loaded member, axially loaded member		
Class 7-12	Thermal and centrifugal stresses; Stresses in thin and thick-walled cylinders and spheres.	CT 02	
Class 13- 18	Beams: Shear force and bending moment diagrams; various types of stresses in beams		
Class 19- 24	Flexural formula; Deflection of beams: integration and area moment methods; Introduction to reinforced concrete beams and slabs, Composite beams	MT	
Class 25-30	Torsion formula; Angle of twist; Modulus of rupture; Helical springs	MT	
Class 31-36	Combined stresses: principal stress, Mohr's Circle; Columns: Euler's formula, intermediate column formulas, the Secant formula	CT 03	
Class 37-42	Flexure formula of curved beams. Introduction to experimental stress analysis techniques; Strain energy; Failure theories, Failure prediction for impact loading, Computational modelling of mathematical problem using software		

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks		
	Class Assessment				
1	СТ	20			
3	СТ	20			
4	СТ	30			
	Exam				
1	MID, Final Exam	80			
2	Final Exam	100			
3	MID, Final Exam	80			
4	Final Exam	70			

REFERENCE BOOKS

1. Strength of materials (4th edition) William Nash, Publisher Mcgraw-hill International Editions, Schaum's Outline Series

2. Mechanics of material with solved problems A C Mandal & M. Quamrul Islam, published by IUT, OIC, 2011

3. Strength of Materials (4th edition) – Andrew Pytel, Ferdinand L. Singer.

- 4. Strength of Materials Beer and Johnston.
- 5. Mechanics of Materials (10th edition) R. C. Hibbeler

Spring Semester L-3, T-I

COURSE INF	ORMATION		
CourseCode	ME 344	Contact Hours : 3.0	0
Course Title	Mechanics of Solids Sessional	Credit Hours : 1.5	0
PRE-REQUIS	ITE		
ME 343			
CURRICULU	M STRUCTURE		
Outcome Based	l Education (OBE)		

SYNOPSIS/RATIONALE

This is the foundation unit in the study of structures. By applying the knowledge gained in Statics and combining it with the concepts gained in Materials Technology the students are introduced to fundamental theories and techniques required to analyze the state of stress and strain in structural members subjected to external loads. This knowledge will allow students to perform the engineering calculations required to ensure that a structural member meets strength, stiffness and stability requirements.

OBJECTIVE

1. Students will be able to instill a basic knowledge of the statistical aspects of mechanics of materials.

2. Develop the formal theory of solid mechanics: the equilibrium, kinematic, and constitutive equations.

3. Introduce the atomistic mechanisms underlying the mechanical behavior of materials.

4. Establish process - structure - property - performance relationships in materials engineering.

LEAR	LEARNING OUTCOMES & GENERIC SKILLS											
No.	Course Outcome	Correspondi ng PO	Bloom's Taxonomy	СР	CA	KP	Asse ssme nt Meth					

						ods
CO1	Apply the fundamentals of Solid Mechanics.	1	C3		4	R, Q, LT
CO2	Analyze the fundamentals of stresses and strains.	2,3	C4		1	R, Q, LT
CO3	Investigate and express the principles of Solid Mechanics in obtaining the solutions for applications in real life engineering problems.	4,5	Р5		5	R, Q, LT

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, LT – Lab Test, PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Experiments:

- 1) a. Study and calibration of Universal Testing Machine (UTM)
 - b. Tensile Test of mild steel specimens.
- 2) Hardness test of metal specimen.
- 3) Impact test of metal specimen.
- 4) Support reaction of a point loaded for a simple supported beam.
- 5) Column test of a mild steel specimen.
- 6) Test of a Helical Spring (Proposed)
- 7) Bending test on Cantilever beam (Proposed)
- 8) Torsion Test (Proposed, we do not have Equipment for This)

CO-PO MAPPING

No		Course Learning (Jutaoma			PF	ROG	RA	M	OU.	ГСО	MES	G (PO)	
NO.		Course Learning C	Jutcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	App Mec	ly the fundament hanics	als of Solid	3											
CO2	Analyze the fundamentals of stresses and strains.				3	3									
CO3 Identify and express the principles of Solid Mechanics in obtaining the solutions for applications in real life engineering problems.							3	3							
Justifica	tion fo	or CO-PO mapping	:												
Mappin	Ig	Corresponding Level of matching	Justifications												
CO1-PC)1	3	In order to identify the basics of solid mechanics, the knowledge of engineering fundamental would be required.												
CO2-PC)1	3	In order to pe of stress strai	erfor nwc	m th ould	ie ex be re	peri equi	ime red	nts,	the	func	lame	ntalk	nowle	edge
CO3-PC	02	2	In order to so of engineerin	olve 1g fu	the s ndar	olid nent	me als	cha is al	nics lso 1	pro equ	blen ired	ns, tł	ne kno	owled	ge
TEACH	ING I	LEARNING STRAT	FEGY												
Teaching	g and L	earning Activities										Enga	igeme	ent (ho	urs)
Face-to-l	Face L	earning													
]	Lectur	e											1	4	
]	Practical												2	8	
											Total 42				
Self-Dire	ected I	earning													
]	Prepar	ation of Lab Reports											1	0	

10
5
10
20
14
1
112
-

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE S	SCHEDULE
Week-1	Introduction class
Week-2	Exp 1: a. Study and calibration of Universal Testing Machine (UTM)
	b. Tensile Test of mild steel specimens.
Week-3	Exp 2: Hardness test of metal specimen.
Week-4	Exp 3:Impact test of metal specimen.
Week-5	Exp 4:Support reaction of a point loaded for a simple supported beam.
Week-6	Exp 5:Column test of a mild steel specimen.
Week-7	Exp 6:Test of a Helical Spring (Proposed)
Week-8	Exp 7:Bending test on Cantilever beam (Proposed)
Week-9	Exp 8: Torsion Test (Proposed, we do not have Equipment for This)
Week-10	Revision Class
Week-11	Final Lab Report Submission
Week-12	Lab Test
Week-13	Viva
Week-14	Quiz Test

ASSESSMENT	Г STATEGY	
	Components	Grading
Continuous	Lab participation and Report	30%
Assessment (60%)	Labtest-1, Labtest-2	30%
	Lab participation and Report Continuous Assessment (60%) Labtest-1, Labtest-2 Lab Quiz Total Marks REFERENCE BOOKS 1. Strength of materials (4 th edition) William Nash, Public	40%
	Total Marks	100%
REFERENCE	BOOKS	
1. Strength of	materials (4 th edition) William Nash, Publ	lisher Mcgraw-hill International Editions,
Schaum's Out	line Series.	-

2. Mechanics of material with solved problems A C Mandal & M. Quamrul Islam 2011.

3. Strength of Materials (4th edition) – Andrew Pytel, Ferdinand L. Singer.

4. Strength of Materials – Beer and Johnston.

5. Strength of Materials – E. P. Popov.

6. Mechanics of Solids Laboratory Practice- A.C. Mandal & M.Q. Islam

Fall Semester L-3, T-II

COURSE INI	FORMATION											
Course Code Course Title	ME 345	Contact Hours	: 3.00									
	Mechanics of Machinery	Credit Hours	: 3.00									
PRE-REQUIS	PRE-REQUISITE											
ME 245, ME	247, ME 343											

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

Understand the basic of mechanism, linkages, gears and gear trains. The knowledge accumulation for finding unbalanced forces and solving for the balanced system containing reciprocating and rotating forces. Gaining knowledge about different vibration and its principles. Getting familiarized with clutch, brake, dynamo-meter and gyroscope and its effects.

OBJECTIVE

1. To determine the balancing of masses of rotating and reciprocating machine elements

2. To understand the principles of gyroscope and the effects of gyroscopic couple

3. To determine the forces and power calculations for brakes and dynamo-meter

4. To determine the static and dynamic forces for mechanical systems

5. To understand the principles of vibrations

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Understand reciprocating and rotating parts of machines: turning moments and balancing of those parts	1,2,	C2	1,2, 3	1,2		R, Q, LT
CO2	Demonstrate knowledge on different types of vibrations and calculating the natural frequency of free, damped and undamped vibrations	1,7	C3	3,5	1,3		R, Q, LT
CO3	Design Cam and cam follower	1,3	C5,C6	2,3, 4,5	1,3 ,5	2	R, Q, LT
CO4	Gain knowledge of gears and gear trains and solve different problems of gear trains	1,3	C2	3,4, 5	1,2		R, Q, LT

C05	Familiarize with different mechanisms of clutch, brake and dynamo-meter	1,2	C4	3,5		R, Q, LT
C06	Study the principles and applications of gyroscopes	2,12	C1,C2	3,5, 6		R, Q, LT

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

Mechanisms; Turning moment; Static and dynamic balancing; Balancing machines.; Study of cams and cam followers; Clutches and brakes; Dynamometers; Study of gears and gear trains; Gyroscope;

b. Detail Contents:

Mechanisms; Turning moment: inertia and kinetic energy of reciprocating and rotating parts; Static and dynamic balancing: reciprocating and rotating parts, multi-cylinder in-line and V-engines, radial engines, and opposed-piston engines; Balancing machines.

Study of cams and cam followers; Clutches and brakes; Dynamometers; Study of gears and gear trains; Gyroscope; Principles and applications.

CO-PO MAPPING

No.	Course Outcome	PROGRAM OUTCOMES (PO)											
1101			2	3	4	5	6	7	8	9	10	11	12
CO1	Understand reciprocating and rotating parts of machines: turning moments and balancing of those parts	3	3										
CO2	Design Cam and cam follower	3		2									
CO3	Gain knowledge of gears and gear trains and solve different problems of gear trains	3		3									
C04	Familiarize with different mechanisms of clutch, brake and	3	3										

	dynam	o-meter													
C05	Study applica	the princi tions of gyroscop	ples and es		3										1
(Nume	erical me	thod used for map	oping which in m	ndica atch	ates ing)	3 as	higl	n, 2	as 1	ned	ium	and	1 as	low le	vel of
JUSTI	FICATIO	ON FOR CO-PO N	IAPPING												
Map	oping	Level of Matching					Ju	stif	icat	ion					
CO1-P	01	3	Students w rotating pa of those pa	ill bo arts c rts.	e ab of m	le to achi	un nes	der : tu	staı rni	nd r ng r	ecip nom	roca	ating s and	and balan	icing
CO1-P	02	3	Application	Application of turning moments and balancing of parts											
CO2-P	01	Students will have an ability to examine forces in trusses and structures													
СО2-РОЗ		2	Students will be able to design cam and cam follower												
CO3-P	01	3	They will b cams	e co	mpe	etent	en	oug	h to) de	sign	sim	ple s	ystem	s of
CO3-P	PO3	3	Students w will observ	ill ha e ho	ave w th	knov lis k	wleo now	lge /led	of o	cam rela	and tes t	l cai o en	n fol Igine	lower ering	and
CO4-P	01	3	Student wi and dynam	ll be 10-m	apt eter	in d	liffe	ren	t m	ech	anis	ms o	of clu	ıtch, b	rake
CO4-P	PO2	3	Students w clutch, bra	ill ha ke a	ave nd c	an a lyna	bili mo	ty t -me	o ex eter	am	ine 1	mec	hanis	sms of	
CO5-P	02	3	Student wi	ll be	apt	in u	nde	erst	and	ing	gyr	osco	pe		
CO5-P	2012	1	Application	n of g	gyra	oscoj	pe								
TEAC	HING L	EARNING STR	ATEGY												
Teachi	ng and L	earning Activities	3									Eng	agen	nent (h	ours)
Face-to	-Face Le	earning													
														42	
Self-Di	irected L	earning												75	

Formal Assessment	5.5				
Total	122.5				
TEACHING METHODOLOGY					
Class Lecture, Pop quiz, Case study, Problem solving					

COURSE SCHEDULE

Week		Торіс		СТ	Remarks
	Mechanism joints	: Simple mechanism, link	, pairs and	CT 01	
Class 1-6	Gyroscope: couples and	Principle, effect of gyros l application	copic		
	Turning mo reciprocatir	oment: Inertia and kinetic ag and rotating parts	energy of	CT 02	2
Class 7-12	Static and c and rotating	lynamic balancing: Recipt g parts	rocating		
Class 13- 27	Study of Ge	ear and Gear Trains		CT 03	;
Class 28-36	Study of Cl	utch, Brake and Dynamo-	MT		
Class 37-42	Study of Ca Cam profile	nm and Cam follower and	design of		
ASSESSMENT	STRATEG	Y			
	COs	Assessment Method	(100%)	Remarks	
		Class Assessme	nt		
	1	СТ	20		
	2	СТ	30		
	3	СТ	20		
4,5 CT					
		Exam			
	1	MID, Final Exam	80]
	2	MID, Final Exam	70		
	3	MID, Final Exam	80		

70

Final Exam

3 4,5

REFERENCE BOOKS

1. Theory of Machines (S. I. Units) – R. S. Khurmi, J. K. Gupta, Publisher – Eurasia Publishing house (Pvt) Ltd.

2. Mechanics of Machines (Advanced theory and examples) 2nd edition (SI units) – John Hannah and R. C. Stephens.

3. Theory of Machines – Thomas Bevan

4. Mechanical Vibration- K. G. Grover

Fall Semester L-3, T-II

COURSE INFORMATION

		1					
Course Code	ME 346	Lecture Contact Hours	: 3.00				
Course Title	Mechanics of Machinery Sessional	Credit Hours	: 1.50				
PRE-REQUIS	ITE						
None							
CURRICULUM STRUCTURE							
Outcome Based Education (OBE)							
SYNOPSIS/RATIONALE							

In this course student will study advanced concepts of kinematic and dynamic modeling and analysis of mechanisms and machines, including linkage mechanisms and cam mechanisms, reciprocating and rotating machinery. The course enables student to explore in depth core mechanical engineering concepts by integrating and applying contemporary analytical, computational and experimental methods. It relates kinematics and dynamics of mechanisms and machines to their design and allows to relate theory and practice using a problem-based approach in which you develop project management skills.

OBJECTIVE

1. This course will make one capable of applying the advanced concepts of kinematics and dynamics in real life problems including linkage mechanisms and cam mechanisms, reciprocating and rotating machinery etc.

2. This course will provide students with the skills, knowledge required to describe and analyse the effects of forces on the motion of particles, rigid bodies and vibrating systems, in order to predict dynamic behaviour as a basis for engineering design.

3. This will provide students with in depth practical knowledge and skills within specialist subdisciplines of the practice area.

LEARNING OUTCOMES & GENERIC SKILLS								
No.	Course Outcome	Correspon ding PO	Bloom's Taxonomy	СР	CA	KP	Assess ment Metho ds	
CO1	Relate basic concepts/principles of work-energy methods and impulse and momentum principles to the solving of engineering problems.	1	P1			1	R, Q, LT	
CO2	Explain the kinetics of particles or rigid bodies moving with planar motion.	1	Р3			1	R, Q, LT	
CO3	Analyze and solve engineering problems relating to the dynamic behavior of vibrating single-degree and two-degrees of freedom, undamped and damped systems.	2	C4			5	R, Q, LT	
CO4	Relate basic principles to applications of vibration transducers / accelerometers.	4	P1			3	R, Q, LT	
(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, LT – Lab Test, PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)								
COUR	SE CONTENT							

Experiments:

1. Study of Moment of Inertia and radius of gyration of a body with bifilar suspension.

- 2. Study of Compound Pendulum.
- 3. Determining Mass moment of inertia of Flywheel.
- 4. Static and Dynamic Balancing of Shaft.
- 5. Study of free vibration Apparatus.
- 6. Study of forced vibration apparatus.
- 7. Determining Critical Speed of shaft by using whirling shaft apparatus.

Study of Critical speed investigation by using critical speed investigation 8. apparatus.

Study of Gear and Gear Trains (Proposed) 9.

CO-PO MAPPING

No	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
110.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Relate basic concepts/principles of work-energy methods and impulse and momentum principles to the solving of engineering problems	3											
CO2	Explain the kinetics of particles or rigid bodies moving with planar motion.	3											
CO3	Analyze and solve engineering problems relating to the dynamic behaviour of vibrating single- degree and two-degrees of freedom, undamped and damped systems.		3										
CO4	Relate basic principles to applications of vibration transducers / accelerometers.				3								

Justification for CO-PO mapping:

Mapping	Corresponding Level of matching	Justifications
CO1-PO1	3	In order to dynamics problem, understanding of different vibration principle is required.
CO2-PO1	3	In order to perform the experiments, kinetics of particles or rigid bodies moving with planar motion knowledge would be required
CO3-PO2	2	In order to solve dynamic behavior of vibrating single-degree and two-degrees of freedom, undamped and damped systems, the knowledge of engineering fundamentals is also required.

CO4-PO4	3	For performing the experimenta accelerometers are needed.	For performing the experiments, applications of vibration accelerometers are needed.						
TEACHIN	TEACHING LEARNING STRATEGY								
Teaching an	nd Learning Activiti	es	Engagement (hours)						
Face-to-Fac	e Learning								
Lec	ture		14						
Prae	etical		28						
			Total 42						
Self-Direct	Self-Directed Learning								
Prej	Preparation of Lab Reports								
Prej	paration of Lab Test		10						
Pre	eparation of presenta	ation	5						
Pre	eparation of Quiz		10						
En	gagement in Group	Projects	20						
Formal Ass	essment								
Cor	tinuous Assessment	t	14						
Fina	1								
Total			112						
TEACHING METHODOLOGY									

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE SC	CHEDULE
Week-1	Expt-01: Study of Moment of Inertia and radius of gyration of a body with bifilar suspension.
Week-2	Expt-02: Study of Compound Pendulum.
Week-3	Expt-03: Determining Mass moment of inertia of Flywheel.
Week-4	Expt-04: Static and Dynamic Balancing of Shaft.
Week-5	Expt-05: Study of free vibration Apparatus.
Week-6	Expt-06: Study of forced vibration apparatus.

Week-7	Expt-07: Determining Critical Speed of shaft by using whirling shaft apparatus.						
Week-8	Expt-08 apparat	Expt-08: Study of Critical speed investigation by using critical speed investigation apparatus.					
Week-9	Expt-09	9: Study of Gear and Gear Trains	(Proposed)				
Week-10	Lab Te	st					
Week-11	Expt-1	1:Revision Class					
Week-12	Final L	ab Report Submission					
Week-13,14	Viva, Ç	Quiz					
	С	omponents	Grading				
Continuous		Lab participation and Report	30%				
Assessment	(60%)	Labtest-1, Labtest-2	30%				
Lab Quiz			40%				
	Т	otal Marks	100%				
REFERENCE BOOKS							

1. Theory of Machines (S. I. Units) – R. S. Khurmi, J. K. Gupta, Publisher – Eurasia Publishing house (Pvt) Ltd.

2. Mechanics of Machines (Advanced theory and examples) 2nd edition (SI units) – John Hannah and R. C. Stephens.

3. Theory of Machines – Thomas Bevan

Spring Semester L-3, T-I

COURSE INFORMATION						
Course Code Course Title	ME 361 Instrumentation and Measurement	Lecture Contact Hours Credit Hours	: 3.00 : 3.00			

PRE-REQUISITE

N/A

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To introduce the students to different electrical and mechanical instruments and components of different types of measurement systems, their circuit components, structure, operating principle and design.

OBJECTIVE

1. To introduce the students with the principles, techniques, equipment and engineering practice of electronic testing as well as underlying instrumentation and measurement technology and tools.

2. To familiarize with current industrial needs.

3. To develop the idea of the modern test technology that plays key role in ensuring quality and functionality of the modern high complexity devices and systems.

4. To build up important skills in the area of practical instrumentation in industrial and research settings with the use of modern modular hardware for measurement.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Students will have clear understanding of different types of measurement systems used in engineering systems.	1,5	C2	3			Q, ASG, F

CO2	Students will be able to analyse various measuring devices like fluid flow measurement, temperature and pressure measurement etc.	1, 3	C3	1, 3, 5		Q, ASG, F
CO3	Students will have fundamental understanding of signal processing, filtering, amplification and their applications in engineering system.	1, 2	C2	3, 5		Q, F, CS
CO4	Students will be able to analyze different types of sensors related to mechatronics.	1,3	C5	1, 5	1,2	Q, F, CS

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- 1. Basic principles of measurement
- 2. Different types of sensing elements
- 3. Different types of measurement systems
- 4. Measurement, transmission and recording methods
- 5. Data acquisition and processing
- 6. Oscilloscopes
- 7. Signal Amplification and Processing
- **b. Detail Contents:**

Basic principles and terminologies of measurement and instrumentation, Characterization and behavior of typical measuring systems, Different types of sensing elements such as ultrasonic transducer, pressure sensor, proximity sensor, thermocouple, thermistor, photodetector, hall effect sensor etc., Measurements of displacement, pressure, temperature, heat flux, flow, motion and vibrations, force, torque and strain, ADC and DAC and their Circuits, analysis of oscillography, graphitization of signal through oscilloscopes, operational amplifiers, filters, bipolar junction transistors, digital signal

CO-PO MAPPING

No.	Course Outcome	PROGRAM OUTCOMES (PO)											
1.00		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Students will have clear understanding of different types of measurement systems used in engineering systems.	3				1							
CO2	Students will be able to analyse various measuring devices like fluid flow measurement, temperature and pressure measurement etc.	3		3									
CO3	Students will have fundamental understanding of signal processing, filtering, amplification and their applications in engineering system.	3	3										
CO4	Students will be able to analyze different types of sensors related to mechatronics.	3		2									

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level of Matching	Justification
CO1-PO1	3	Students will gather knowledge derived from physics and engineering fundamentals as well as common engineering practice

CO1-PO5	1	Students will be able to utilize different types of measurement systems and modern tools					
CO2-PO1	3	Students will learn the common engineering practice prevailing in the field					
СО2-РОЗ	3	Students will gain in-depth knowledge of various types of measuring devices					
CO3-PO1	3	Student will gather knowledge on various systems	important engineering				
CO3-PO2	3	Student will be able to demonstrate knowledge on various electronics topics like signal processing, amplification etc.					
CO4-PO1	3	Students will gain knowledge on various types of sensor and measuring elements					
CO4-PO3	3	Students will gain in-depth knowledge on pertinent to mechatronic	different topics				
TEACHING L	EARNING STR	ATEGY					
Teaching and Le	earning Activities		Engagement (hours)				
Face-to-Face Le	earning						
			42				
Self-Directed Le	earning		75				
Formal Assessm	nent		5.5				
Total	122.5						
TEACHING METHODOLOGY							
Class Lecture, P	Pop quiz, Case stu	dy, Problem solving					

COURSE SCHEDULE									
Week		Торіс		СТ	Remarks				
1-2	Basic j measu Charac measu	principles and terminologies rement and instrumentation eterization and behavior of t ring systems	CT-1						
3-5	Differe ultraso proxim photod	ent types of sensing element onic transducer, pressure sen nity sensor, thermocouple, the letector, hall effect sensor et	CT-2						
6-10	Measu temper vibrati	rements of displacement, pr rature, heat flux, flow, motio ons, force, torque and strain	Mid-Term						
11	Data a DAC a	Data acquisition and processing, ADC and DAC and their Circuits							
12-13	Operat transis	ional amplifiers, Filters, Bij tors, Digital signal	n CT-3						
14	Analys signal	sis of oscillography, Graphit through oscilloscopes							
ASSESSMENT	Γ STRA	ГЕGY							
	COs	Assessment Method	(100%)	Remarks					
		Class Assessmer	nt						
	1	Assignment	20						
	2	Assignment	20						
		Exam							
	1	Final Exam, CT	Final Exam, CT 80						
	2	Final Exam, CT, MID	80						
	3	Final Exam, CT	80						
	4	Final Exam, CT, Mid	80						

COURSE SCHEDULE									
Week	Торіс	СТ	Remarks						
1-2	Basic principles and terminologies of measurement and instrumentation, Characterization and behavior of typical measuring systems	CT-1							
3-5	3-5 Different types of sensing elements such as ultrasonic transducer, pressure sensor, proximity sensor, thermocouple, thermistor, photodetector, hall effect sensor etc.								
6-10	Measurements of displacement, pressure, temperature, heat flux, flow, motion and vibrations, force, torque and strain	Mid-Term							
11	Data acquisition and processing, ADC and DAC and their Circuits								
12-13	Operational amplifiers, Filters, Bipolar junction transistors, Digital signal	CT-3							
14	Analysis of oscillography, Graphitization of signal through oscilloscopes								
REFERENCE BOOKS									
1. Introduction t	o Mechatronics and Measurement Systems – David	G. Alciatore, M	ichael B.						

Histand.

2. Experimental Methods for Engineers – J. P. Holman, Publisher – Mc Graw – Hill Inc.

3. Mechanical Measurements – Thomas G. Beckwith, Roy D. Marangoni, John H. Lientard.

Spring Semester L-3, T-I

COURSE INFORMATION									
Course Code	ME 366	Lecture Contact Hours	: 3.00						
Course Title	Engineering Simulation Sessional	Credit Hours	: 1.50						
PRE-REOUISITE									

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course examines a variety of engineering system modelling and simulation methods, as well as numerical and computer based solution techniques utilized in industrial and engineering environments. Techniques for finding solutions to these systems include: graphical, algebraic, numerical, state space, simulation and computational processes. Case studies in industry and engineering applications are used to illustrate the techniques and modelling concepts. Examples of simulation and analysis methods will be related to the linear and non-linear, deterministic and non-deterministic systems.

OBJECTIVE

1. Characterize engineering systems in terms of their essential elements, purpose, parameters, constraints, performance requirements, sub-systems, interconnections and environmental context.

2. Engineering problem modelling and solving through the relationship between theoretical, mathematical, and computational modelling for predicting and optimizing performance and objective.

3. Mathematical modelling real world situations related to engineering systems development, prediction and evaluation of outcomes against design criteria.

4. Develop solutions and extract results from the information generated in the context of the engineering domain to assist engineering decision making.

5. Interpret the model and apply the results to resolve critical issues in a real world environment.

6. Develop different models to suit special characteristics of the system being modelled.

LEARN	LEARNING OUTCOMES & GENERIC SKILLS											
No.	Course Outcome	Correspondi ng PO	Bloom's Taxonomy	СР	CA	KP	Assess ment Method s					
CO1	Model deterministic systems and differentiate between		P1		2	3	R, Q,					

	nonlinear and linear models.	1					LT
CO2	Simulate linear and non-linear ordinary differential equations and deterministic systems.	2	Р3			2	R, Q, LT
CO3	Estimate and validate a model based upon input and output data.	4	C4	2		4	R, Q, LT
CO4	Create a model prediction based upon new input and validate the output data.	3	Р5	3	3,5	5	R, Q, LT
CO5	Comprehend and apply advanced theory-based understanding of engineering fundamentals and specialist bodies of knowledge in the selected discipline area to predict the effect of engineering activities.	5	Р4			6	R, Q, LT
CO6	Apply underpinning natural, physical and engineering sciences, mathematics, statistics, computer and information sciences to engineering applications.	6	C3	3,4, 5	2,3	7	R, Q, LT

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, LT – Lab Test, PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Experiments:

- **1.** Combustion control (jet engine in aero lab) and/or heating control for boiler with simulation using MATLAB toolbox (CAD and Automotive lab)
- 2. Car control with ECU (Automotive Lab)
- 3. Generator inertia and RLC circuit, such as operational amplifiers (Electrical circuit lab)
- 4. Projectile control with fin stabilization (Aeronautical Lab, aileron controls and software can be used)

- 5. PLC control demonstration with ladder logic programming (Mechanical thermo lab and/or IPE lab)
- 6. Pneumatic and hydraulic circuits (Mechanical lab, 1st floor)
- 7. Modeling and demonstration of 4 post car lift for electro-hydro-pneumatic control (Automotive MAHA car lift, automotive lab)
- 8. Pump test bench (Hydraulic pump testing building)
- 9. Solenoid, its structure and function (Needs the setup)
- **10. PID** controller (Electrical circuit lab: temperature control and water level control equipment)
- 11. Car suspension system with spring-mass damper model and MATLAB simulation (Automotive lab)
- 12. Heat transfer, 2 phase flow (Thermo lab, setup needs to be prepared)
- 13. Gyroscope control (Instrumentation lab, setup needs to be assembled and prepared)

CO-PO MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
110.	Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Model deterministic systems and differentiate between nonlinear and linear models.	3											
CO2	Simulate linear and non-linear ordinary differential equations and deterministic systems.		2										
CO3	Estimate and validate a model based upon input and output data.				2								
CO4	Create a model prediction based upon new input and validate the output data.			3									

CO5	Comprehend and apply advanced theory-based understanding of engineering fundamentals and specialist bodies of knowledge in the selected discipline area to predict the effect of engineering activities.			3				
CO6	Apply underpinning natural, physical and engineering sciences, mathematics, statistics, computer and information sciences to engineering applications.				1			

Justification for CO-PO mapping:									
Mapping	Corresponding Level of matching	Justifications							
CO1-PO1	3	In order to differentiate between the linear and non linear model, the knowledge of engineering mathematics would be required.							
CO2-PO2	2	In order to simulate differential equations, the knowledge of identification and formulae would be required							
CO3-PO4	2	In order estimate and validate a model, the knowledge of investigation, analysis and interpretation of data are also required.							
CO4-PO3	3	For creating a model, design problems are needed in this laboratory.							
CO5-PO5	3	In order to comprehend and apply theory based understanding one need to know the techniques of appropriate application of theory.							
CO6-PO6	1	In order to apply computer and information sciences to engineering area, the knowledge of reasoning application and contextual knowledge							

TEACHING LEARNING STRATEGY							
Teaching and Learning Activities	Engagement (hours)						
Face-to-Face Learning							
Lecture	14						
Practical	28						
	Total 42						
Self-Directed Learning							
Preparation of Lab Reports	10						
Preparation of Lab Test	10						
Preparation of presentation	5						
Preparation of Quiz	10						
Engagement in Group Projects	20						
Formal Assessment							
Continuous Assessment	14						
Final Quiz	1						
Total	112						
TEACHING METHODOLOGY							
Lecture followed by practical experiments and discussion, Co-operativ	ve and Collaborative						

Method, Project Based Method

COURSE S	SCHEDULE
Week-1	Exp 1:Combustion control (jet engine in aero lab) and/or heating control for boiler with simulation using MATLAB toolbox (CAD and Automotive lab)
Week-2	Exp 2: Car control with ECU (Automotive Lab)
Week-3	Exp 3: Generator inertia and RLC circuit, such as operational amplifiers (Electrical circuit lab)
Week-4	Exp 4:Projectile control with fin stabilization (Aeronautical Lab, aileron controls and software can be used)
Week-5	Exp 5:PLC control demonstration with ladder logic programming (Mechanical thermo lab and/or IPE lab)

Week-6	Exp 6: Pn	eumatic and hydraulic circuits (Mechar	nical lab, 1 st floor)
Week-7	Exp 7:Mo control (A	deling and demonstration of 4 post car utomotive MAHA car lift, automotive	lift for electro-hydro-pneumatic lab)
Week-8	Exp 8:Pur	np test bench (Hydraulic pump testing	building)
Week-9	Exp 9: So	lenoid, its structure and function (Need	s the setup)
Week-10	Exp 10:P control eq	ID controller (Electrical circuit lab: t uipment)	emperature control and water level
Week-11	Exp 11:C simulation	ar suspension system with spring-m (Automotive lab)	ass damper model and MATLAB
Week-12	Exp 12:He	eat transfer, 2 phase flow (Thermo lab,	setup needs to be prepared)
Week-13	Viva, Lab	Report Submission	
Week-14	Quiz Test		
ACCECCI			
ASSESSI	VIENI SII	RATEGY	
ASSESSI	VIENI SII	Components	Grading
Conti	nuous	Components Lab participation and Report	Grading 30%
Contin	nuous ent (60%)	Components Lab participation and Report Labtest-1, Labtest-2	Grading 30% 30%
Contin	nuous ent (60%)	Components Lab participation and Report Labtest-1, Labtest-2 Lab Quiz	Grading 30% 30% 40%
Contin	nuous ent (60%)	Components Lab participation and Report Labtest-1, Labtest-2 Lab Quiz Total Marks	Grading 30% 30% 40% 100%
ASSESS Contin Assessme REFEREN	nuous ent (60%)	Components Lab participation and Report Labtest-1, Labtest-2 Lab Quiz Total Marks KS	Grading 30% 30% 40% 100%
ASSESSING Contin Assessme REFEREN 1. Numeric	nuous ent (60%) NCE BOOI	Components Lab participation and Report Labtest-1, Labtest-2 Lab Quiz Total Marks KS for Engineers (4 th edition) – Steven C.	Grading 30% 30% 40% 100% Chapra, Raymond P. Carale

3. "Computer Integrated Design and Manufacturing" by David Bedworth and Philip Wolfe

Fall Semester L-3, T-II

COURSE INFORMATION

Course Code Course Title	ME 367 Automobile Engineering	Lecture Contact Hours Credit Hours	3.00 3.00
PRF-REALUS	ALL		
None			

CURRICULUM STRUCTURE Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course provides an introduction to the essential theoretical basis of Automobile Engineering and its application to a range of problems of relevance to practical engineering. It enables you to explore new areas, create new avenues in the fields of research and development of technologies in the field of automobile engineering.

OBJECTIVE

The student will be able to understand the fundamental principles and technologies involved in automobile engineering, learn the main components and systems, introduce themselves to the most recent innovation taking place in the industry and how the industry will shape facing challenges of sustainable development and human safety

LEAF	RNING OUTCOMES & GEN	ERIC SKILL	S				
No.	Course Outcome	Corresponding PO	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Understand the anatomy of the automobile in general	1	C1, C3			1,4	Q, ASG, F
CO2	Understand the working principles of various parts of the automotive vehicle	1	C3			1,4	Q, ASG, F
CO3	Know about the various systems inherent in an automotive vehicle	1	C1, C3			1,4	Q, F, CS
CO4	Develop a strong base for understanding future developments in the automobile industry and understand the environmental implications of automobile emissions.	6,7	C1, C3			6,7	Q, F, CS, Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

a. Main Contents::History and development of automobile in modern century, Transmission

system, Powertrain system, Subsystem of automobile, Automotive electronics, Vehicle

dynamics and chassis

b. Detail Contents: History and development of automobile in modern century. The latest examples of energy-saving vehicles (hybrid, electric and fuel cell vehicles). Hybrid electric vehicles: electronic motor control, battery pack build, practical electronics, synergy drive.

Transmission system: Introduction of manual gear transmission, clutches, automatic gears, torque converters, CVT transmission,

Powertrain system: Differentials, propeller shaft, axles, other components. All-wheel drive, Real wheel drive, Front wheel drive, Four-wheel drive systems.

Subsystem of automobile: Starting and charging systems, steering and suspension systems, braking systems, lubrication systems. exhaust emission systems.

Automotive electronics: engine ECU, sensors and actuator for safety and stability of modern automotive vehicle.

Vehicle dynamics and chassis. Self-driving Car. Crash Safety. Introduction of tire.

				DD	00	D۸	N (FCO	ME		<u> </u>	
No.	Course Learning Outcome	1	2	2 PK	4	KA 5		70.			5 (PU)	10
		1	2	3	4	Э	0	/	8	9	10	11	12
CO1	Understand the anatomy of the automobile in general	3											
CO2	Understand the working principles of various parts of the automotive vehicle	3											
CO3	Know about the various systems inherent in an automotive vehicle	3											
CO4	Develop a strong base for understanding future developments in the automobile industry and understand the environmental implications of automobile emissions.						3	3					
(Nume	erical method used for mapping which	indi	cate	s 3 a	is hi	gh,	2 a	s m	ediu	m ar	nd 1 as	s low	level
of mate	ching)												

CO-PO MAPPING

JUSTIFICA	FION FOR CO	-PO MAPPING					
Mapping	Level of Matching	Justification					
CO1-PO1	3	Understanding the basic anatomy of me their market and engineering fundame	odern automobile, ntals.				
CO2-PO1	3	Students will be able to analyze the wor various automobile parts.	king principle of				
СОЗ-РО1	3	Students will be able to know about various integral system and sub system such as mechanical and electrical features attached with modern automobile.					
CO4-PO6	3	Students will apply appropriate technic modern engineering to assess societal, h consequent responsibilities relevant to engineering practice.	jues, resources, and lealth, safety and the professional				
CO4-PO7	3	Students will be able to Understand diffigure impact of emission and find out profess solutions for sustainable development.	ferent environmental ional engineering				
TEACHING	LEARNING S	TRATEGY					
Teaching and	Learning Activi	ties	Engagement (hours)				
Face-to-Face	Learning		42				
Self-Directed	Learning		75				
Formal Asses	sment		5.5				
Total			122.5				
TEACHING	METHODOL	DGY					
Class Lecture	, Pop quiz, Case	study, Problem solving					

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
Class (1-5)	History and development of automobile in modern century. The latest examples of energy-saving vehicles (hybrid, electric and fuel cell vehicles). Hybrid electric vehicles: electronic motor control, battery pack build, practical electronics, synergy drive.		

Class (6-16)	Transmissic of manual g clutches, au converters,	on system: Introduction ear transmission, tomatic gears, torque CVT transmission,	CT01 will	over this sec	ction
Class (17-25)	Powertrain s propeller sh components wheel drive Four-wheel	system: Differentials, aft, axles, other 5. All-wheel drive, Real , Front wheel drive, drive systems.	CT02 will Mid-Terr	over this sec n will cover t section	ction this
Class (26-32)	Subsystem of and chargin suspension systems, lub exhaust emi	of automobile: Starting g systems, steering and systems, braking prication systems. ssion systems.	Mid-Terr	n will cover t section	this
Class (33-38)	Automotive ECU, senso and stability vehicle.	electronics: engine rs and actuator for safety of modern automotive	CT03 will	over this sec	ction
Class (39-42)	Vehicle dyn driving Car. Introductior	amics and chassis. Self- Crash Safety. of tire.			
ASSESSMEN	T STRATE	GY			
		1	1		7
	COs	Assessment Method	(100%)	Remarks	4
		Class Assessme	ent		4
	1	Assignment	20		-

2	Assignment	20	
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	100	
4	Final Exam, CT, Mid	100	
REFERENCE BOOKS

- 1. Automotive Mechanics W. H. Crouse, Donald L Anglin
- Automotive Technology Jack Erjavec
 Automobile Engineering Vol 1 and Vol 2 Dr.Kirpal Singh

Fall Semester L-3, T-II

COUI	COURSE INFORMATION									
Course Code Course	e e	: ME 372 : Industrial Training	g Ci	ecture Contact redit Hours		: 4 weeks : 1.50				
PRF_										
Student should complete all courses up to 3 rd Year. 2 nd Semester										
student should complete an courses up to 5 Teat, 2 Semester										
CURI	CURRICULUM STRUCTURE									
Outco	me Base	d Education (OBE)								
SYNC	DPSIS/R	ATIONALE								
To pro organiz	ovide the zation as	e experience for t well as the function	he student ality of the	ts regarding e engineers in	indust indust	rial e ries.	nviro	nment and		
OBJE	ECTIVE									
1. 2. 3.	To be a profession To be a To be ab	able to practice the on of engineering. The to involve and the to work in a team when to affectively	ne respons d experien n and mana	bibility of be ce the true v age a project v	comin workin within	g an Ig env a give	engir vironn en tim	neer in the ment of the e frame.		
4.	written).	able to effectively	commun	icate solution	to p	roblei	ns (o	ral, visual,		
COU	RSE OU	TCOMES & GEN	ERIC SK	ILLS	T		-	1		
No.	Co	ourse Outcome	Correspon ding PO	Bloom' s Taxono my	СР	CA	KP	Assessment Methods		
CO1	Develop experier industria mainten engineer aircraft	practical nce. in the al sector of ance, planning, ring service and inspection.	3	C4			K5	Pr,R		

CO2	Recognize the s and managemer industry/organiz apply this know the individual's professional life	tructure at of an zation to ledge in	9			A1			4					Pr, R		
CO3	Internalize the training knowle in project or res work.	industrial dge further earch	12			A5		1 &	2	18	22			Pr , R		
(CP- Projec Bloon SKII	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam; Bloom's Taxonomy: C-Cognitive, P- Psychomotor and A-Affective) SKILL MAPPING															
No.	Course I	Learning Outc	ome	1	2	F	PRO	GR	AN	10	UT	COI	MES	(PO)	10	
CO1	Develop practical experience. in the industrial sector of maintenance,planning, engineering service and aircraft inspection					2		-								
CO2	Recognize the management industry/orgat this knowledg individual's p	e structure and of an nization to app ge in the rofessional lif	l oly fe.									3				
CO3	Individual's professional life. Internalize the industrial trainin knowledge further in project or research work.														3	
(Nume match	(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level o matching)								evel of							
JUST	TIFICATION FOR	Ο-ΡΟ ΜΑΡΡΙ	ING													
	Mapping	Level of Matching							Ju	stif	ica	tion				
CO	1-PO3	2	2 Students will develop practical experience. in the industrial sector of maintenance, planning, engineering service and aircraft inspection					ring								

СО2-РО9	3	Students can recognize the structure and management of an industry/organization to apply this knowledge in the individual's professional life.					
CO3-PO12	3	Students will be adroit at the industrial training knowledge which can be used for further project or research work.					
TEACHING METHODOLOGY							
Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method							

COURSI	COURSE SCHEDULE						
Week 1	Industrial Visit & Training						
Week 2	Industrial Visit & Training						
Week 3	Industrial Visit & Training						
Week 4	Test for Industrial Performance, Presentation & Viva						

ASSESSMENT STRATEGY						
	COs	Assessment Method	(100%)	Remarks		
		Class Assessme	ent			
		Attendance	10			
	1	Industrial				
	2	Observation and	90			
	3	Presentation				
TEXT AND REFERENCE BOOKS						
As per the type of c	core wor	k of the assigned industry				

Fall Semester L-3, T-II

COURSE INFORMATION								
Course Code	ME 368	Lecture Contact Hours	: 3.00					
Course Title	Automobile Engineering Sessional	Credit Hours : 1.50						
PRE-REQUIS	ITE							
ME 367								
CURRICULU	M STRUCTURE							
Outcome Based	Education (OBE)							
SYNOPSIS/RATIONALE								
Students need to experiment based on various types of vehicles, working principle and mechanism of vehicles, different parts and their functions of a vehicle.								

OBJECTIVE

1. Penetrate deep into engine classification, construction and operation of IC engine

2. Understand the performance parameters and testing methodology

3. Understand the necessity of ignition system SI engines

4. Understand the individual systems of Automobile.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Corresponding PO	Bloom's Taxonomy	СР	CA	KP	Assess ment Method s
CO1	Students learn different mechanism used in automobile.	1	C3			1	R, Q, LT
CO2	Different application of principles learned in machine design, control engineering, combustion,		Р5		3	5	R, Q, LT

	and others.	3,4				
CO3	Deep and insightful knowledge on automobile internal systems and their testing.	12	P4		4	R, Q, LT

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, LT – Lab Test, PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Experiments:

- 1. Study of Automotive Manual transmission system (Expt setup)
- 2. Study of Automotive Automatic transmission system (have a AT X sectioned)
- **3.** Study of steering geometry and determine related parameters (Experiment setup)
- 4. Study of Automotive powertrain (3 ton Truck body) (Proposed)
- 5. Study of Automotive Chassis (Nissan Xtrail) (Proposed)
- 6. Study of Wheel alignment (have setup, not functional)
- 7. Study of Wheel balancing (have setup, not functional)
- 8. Study Testing of CNG/LPG (Proposed, Head Sir) Engine
- 9. Study of Electrical and Hybrid Vehicle (Head Sir)

No	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
10.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Students learn different mechanism used in automobile.	3											
CO2	Different application of principles learned in machine design, control engineering, combustion, and others.			3	3								
CO3	Deep and insightful knowledge on automobile internal systems and their testing. The lesson learned will be helpful in the future.												3

CO-PO MAPPING

Justification for CO-PO mapping:							
Mapping	Corresponding Level of matching	Justifications					
CO1-PO1	3	In order to understand Automobile system, the knowledge of engineering fundamental would be required.					
CO2-PO3	3	In order to understand the design of different automobile systems, engineering knowledge is important so that it could be used for greater good of the society.					
CO2-PO4	3	The study will enable students to investigate different mechanism hands on, test them and gather results for analyzing.					
CO3-PO12	3	Studying different systems in the automotive will enable the students about understanding complex systems and their working principles later in their career.					
TEACHING	LEARNING STR	RATEGY					
Teaching and	Engagement (hours)						
Face-to-Face	Learning						
Lectur	e		14				
Practio	cal		28				
			Total 42				
Self-Directed	Learning						
Prepar	cation of Lab Report	rts	10				
Prepar	cation of Lab Test		10				
Prepa	aration of presentat	ion	5				
Prepa	aration of Quiz		10				
Enga	gement in Group F	Projects	20				
Formal Asses							
Contin	14						
Final	1						
Total	112						

TEACHING METHODOLOGY	

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE S	COURSE SCHEDULE							
Week-1	Introducti	on class						
Week-2	Exp 1: Str	udy of Automotive Manual transmission	n system (Expt setup)					
Week-3	Exp 2: Str	udy of Automotive Automatic transmiss	sion system (have a AT X sectioned)					
Week-4	Exp 3:Stu	Exp 3:Study of steering geometry and determine related parameters (Expt setup)						
Week-5	Exp 4:Stu	Exp 4:Study of Automotive powertrain (3 ton Truck body) (Proposed)						
Week-6	Exp 5: Str	udy of Automotive Chassis (Nissan Xtra	ail) (Proposed)					
Week-7	Exp 6:Stu	idy of Wheel alignment (have setup, not	t functional)					
Week-8	Exp 7:Stu	idy of Wheel balancing (have setup, not	t functional)					
Week-9	Exp 8: Study Testing of CNG/LPG (Proposed, Head Sir) Engine							
Week-10	Exp 9: Study of Electrical and Hybrid Vehicle (Head Sir)							
Week-11	Final Lab	Report Submission						
Week-12	Lab Test							
Week-13	Viva							
Week-14	Quiz Test							
ASSESSM	AENT STE	RATEGY						
		Components	Grading					
Contii	nuous	Lab participation and Report	30%					
Assessme	ent (60%)	Labtest-1, Labtest-2	30%					

Lab Quiz	40%								
Total Marks	100%								
Total Marks 100% REFERENCE BOOKS 1. Ganesan.V.Internal Combustion Engines, Tata-McGraw Hill Publishing Co., New Delhi, 1994. 2. Heldt.P.M.,High Speed Combustion Engines, Oxford IBH Publishing Co.,1985.									
REFERENCE BOOKS 1. Ganesan.V.Internal Combustion Engines, Tata-McGraw Hill Publishing Co., New Delhi, 1994.									
2. Heldt.P.M.,High Speed Combustion Engines, Oxford IBH	Publishing Co.,1985.								
3. Maleev.V.M, Diesel Engine Operation and Maintenance, N	AcGraw Hill, 1974.								
4. Dicksee.C.B, Diesel Engines, Blackie & Son Ltd., London	, 1964.								

Spring Semester L-3, T-I

COURSE INF	ORMATION								
Course Code Course Title	ME 375 Control Engineering								
PRE-REQUIS	ITE								
CSE 171 - Con	nputer Programming Language								
ME 103 - Ther	modynamics								
ME 247 - Engi	neering Mechanics II								
ME 321 - Fluid	l Mechanics I								
ME 361 - Instr	umentation and Measurement								
CURRICULU	M STRUCTURE								
Outcome Base	d Education (OBE)								

SYNOPSIS/RATIONALE

This final year course requires basic knowledge of mechanics, fluids, thermodynamics and electrical circuits with orientation in computer programming (C and MATLAB). It comprises theory and mathematical modeling, some physical demonstrations, visualization of system responses and simulation. Initially, the understudy is introduced to dynamic systems and their mathematical modeling using differential equations, linear approximations, Fourier and Laplace Transforms. Block diagrams and transfer functions are emphasized for system's response analysis. Analytical solutions of simplified control systems using state variables and basics for the development of control architectures are introduced. Standard inputs, response, control action, and system types are critically evaluated for stability and performance using Time and Frequency domain plots of single and multi-body or multi-component systems. In addition, analogues of control systems and equivalence of mechanical, thermal, fluids and electrical systems are elaborated. Design of Lead-Lag controllers for real life hydraulic and pneumatic control systems are carried out along with discussion of elements of electro-mechanical controls. Finally, the course is concluded with detailed study of digital computer control and robust systems.

OBJECTIVE

1. To understand the application of physical laws and differential equations in order to create mathematical models of dynamic systems

2. To apply concepts of transfer function and Laplace transforms in order to analyze system response

3. To analyze control system stability and to evaluate robustness of comparable systems under standard inputs

4. To apply PLC and PID based control protocols to design simulated control systems of real world applications

5. To evaluate the performance of digital and robust systems using time and frequency domain outputs and simulation in MATLAB

LLAN							
No.	Course Outcome	Correspondi ng PO	Bloom's Taxonomy	СР	CA	KP	Assess ment Method s
CO1	Students will be able to create mathematical models of dynamic real world systems	PO 1	C6	P1		K3	ASG, F
CO2	Students will be able to analyze responses of real dynamic systems to different types of inputs	PO 2	C4	Р3		K2 K3	T, ASG, Mid Term, F
CO3	Students will be able to analyze control system's stability and evaluate robustness of different ones.	PO 2	C4	P2, P3		K2	Mid Term, F

LEARNING OUTCOMES & GENERIC SKILLS

CO4	Students will be able to design control systems for the control of practical dynamic systems.	PO 3	C6	P1, P3	K2 K5	PR, R, F
CO5	Students will be able to evaluate different control systems' stability and robustness using analytical methods and computer software	PO 5	C5	P2, P3	K6	ASG, Mid Term & F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

1. Control Systems: Open and closed loop control systems; Feedback and feed-forward control architectures, their basics and performance evaluation, limitations, robustness and stability; Fundamentals of modeling dynamic systems using the laws of physics and differential equations, linear approximation using Taylor series.

2. Block Diagrams: Fundamentals of block diagram representations of control systems, their simplifications and applications in designing control system architecture; Signal Flow graph models; Simulation of control systems using MATLAB.

3. Mass-Spring-Damper Systems: Analogies of single and multi-body systems, natural and forced responses, damping ratios, resonant peaks and band widths; Applications in real world including active vehicle suspension system control with demonstration, and simulation via MATLAB.

4. RLC Circuit based Control: Concept, mathematical models and control applications of RLC circuits including Operational Amplifiers, Demonstration, MATLAB simulation.

5. State Variable Approach: State variables of a dynamic system, state differential equation, system response using state transition matrix, simulation of state variable models of control systems using MATLAB.

6. Inputs and Responses of Control Systems: Standard inputs (unit impulse, rectangular, step, ramp, parabolic etc.); Responses of dynamic systems (natural, forced, transient, steady-state etc.); Percentage overshoot, Lead-Lag.

7. Stability Analysis: Basic concept for linear systems using the Routh array test, marginal stability, control design constraints, applications in feedback systems.

8. Evans Root Locus techniques: Mathematical basis and application in control design for real world systems.

9. Gain and Phase margins: Basic concept, polar plots, computation from Bode diagrams and Nyquist plots, implications in terms of robust stability of control systems.

10. Actuator Control: Pneumatic, hydro-pneumatic, electro-hydro-pneumatic actutators, study of pneumatic circuits with physical demonstration, electro-hydro-pneumatic control system demonstration and mathematical modeling for 4 post car lift, simulation using MATLAB; D.C. and servo motors control methods and mathematical models, their analysis using block diagrams and transfer functions.

11. Design of Feedback Control Systems: Phase Lead and Lag-Design using Bode diagrams and root locus; Lead-Lag compensators based on frequency data for open-loop linear

systems; PLC based control fundamentals, physical demonstration using trainer and MATLAB simulation; PID controller basics, algorithms for control including ladder diagrams, designing PID controllers based on empirical tuning rules, physical demonstration and modeling of water level control in water reservoir and temperature control in heating set-ups.

12. Automotive control systems: Integration of engine management and transmission control systems, power train control systems, automatic clutch and throttle system, chassis control systems: Antilock Braking systems (ABS), electronic damping control systems, power assisted steering systems, traction systems. Cruise control.

13. Electromechanical system: mathematical modelling and designing of electromechanical systems. Air bag and seat pre-tensioner systems. Servo-mechanism.

14. Thermostatic control systems, electromechanical, hydraulic and pneumatic positioner systems.

CO-PO MAPPING

No	Course Learning Outcome			PR	ROG	RA	M	DU.	ГСО	MES	G (PO)	
190.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Students will be able to create mathematical models of dynamic real world systems	3											
CO2	Students will be able to analyze responses of real dynamic systems to different types of inputs		3										
CO3	Students will be able to analyze control system's stability and evaluate robustness of different ones.		3										
CO4	Students will be able to design control systems for the control of practical dynamic systems.			2									
CO5	Students will be able to evaluate different control systems' stability and robustness using analytical methods and computer software					3							

Justification for CO-PO mapping:									
Mapping	Corresponding Level of matching	Justifications							
CO1-PO1	3	Creation of mathematical models of physi significant depth of engineering knowledg of first principles.	cal systems will involve e; often with application						
CO2-PO2	3	Considerable analytical ability will be control systems.	exercised in analyzing						
CO3-PO2	3	Evaluation of different control approa problem and constraints demands identific complex problems analysis and evaluation.	ches for a designated acation, formulation and						
CO4-PO3	2	Design of control systems in using calc emphasizes designing skills and de engineering problems.	ulations and MATLAB veloping solutions to						
CO5-PO5	3	Assessment of different control strategies and computer software will fortify student computation tools and analysis.	using analytical means s skills in using modern						
TEACHING	LEARNING STR	RATEGY							
Teaching and	Learning Activitie	S	Engagement (hours)						
Face-to-Face			42						
Self- Learning	g & Reports		58						
Preparation &	z Exams		20						
Total	Total 120								
TEACHING	METHODOLOG	Ϋ́Υ							
1. Feedback of	on submitted assign	ments							
2. Feedback o	n submitted group	projects							
3. Feedback o	n submitted compu	ter programs in MATLAB (for visualization	n)						
4. Review of	class tests and mid-	-term exam scripts							

5. Open group discussion on projects and materials learnt from open courseware

COURSE S	CHEDULE
Week-1	Dynamic systems introduction and their modeling using ODEs
Week-2	Control systems introduction and types: feedback and feed forward, open and closed loop control; their importance, demonstration using automobile ECU.
Week-3	Mass-spring-damper systems for single and multi-body, ODEs, Laplace transforms, demonstration via vehicle active suspension, visualization using MATLAB
Week-4	Resistor, Inductor and Capacitor (RLC) circuit basics, analogy with mechanical systems, RLC control, visualization using MATLAB
Week-5	State Variable Approach to control engineering, state differential equation, system response using state transition matrix, simulation in MATLAB

Week-6	Inputs of Control Systems: Standard inputs (unit impulse, rectangular, step, ramp,
	parabolic etc.); Responses of dynamic systems (natural, forced, transient, steady-
	state etc.); Lead-Lag.
Week-7	Stability Analysis of linear systems, concept of marginal stability, control design
	constraints, applications in feedback systems; Review for mid-term exam
Week-8	Root Locus: Mathematical basis, plots and application in control system design
Week-9	Gain and Phase margins: Basic concept, polar plots,
Week-10	Bode diagrams and Nyquist plots, robust stability of control systems, MATLAB
	simulations
Week-11	Actuator Control for pneumatic, hydro-pneumatic, electro-hydro-pneumatic
	actutators, demonstrations using pneumatic circuits and 4 post car lift, simulations
	in MATLAB; D.C. and servo motors control, block diagrams and transfer functions
	methods
Week-12	Design of Feedback Control Systems for Phase Lead and Lag-Design using Bode
	diagrams and root locus; Lead-Lag compensators, MATLAB visualization
Week-13	PLC based control systems, physical demonstration using PLC trainer, and
	MATLAB simulation
Week-14	Control system design and evaluation using MATLAB; Review for final
	examination
ASSESSME	ENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessmen	t	
	Class	5%	
	Participation/Observation		
CO1	Assignment 1, CT 1	7.5%	
CO2	Assignment 2, CT 2	7.5%	
	Exam		
CO2,	Mid Term	20	
3, 5			
CO	Final Exam	60	
1-5			

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective **Domain**)

REFERENCE BOOKS

 Modern Control Systems, 12th Edition, by Dorf and Bishop (Text Book)
 Control System Engineering, 6th Edition, by Norman Nise (Reference Book & Further Reading)
 Introduction to Automatic Controls, 2nd Edition, by Howard L. Harrison and John G. Bollinger (Reference)

N/A

Spring Semester L-3, T-I

COURSE INFO	ORMATION		
Course Code	ME 376	Lecture Contact Hours	: 3.00
Course Title	Control Engineering Sessional	Credit Hours	: 1.50
PRE-REQUIS	ITE		

ME 375

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

Introduction to control systems and their representation by different equations and Laplace transforms; Block diagrams and transfer functions; Analog computer solution of system equations; System response, control action and system types, Frequency response; System analysis; System compensation; Analogues of control systems; Hydraulic and pneumatic control systems; Elements of electromechanical controls; Introduction to digital computer control.

OBJECTIVE

1. To introduce different types of system and identify a set of algebraic equations to represent

and model a complicated system into a more simplified form to interpret different

physical and mechanical systems in terms of electrical system to construct equivalent

electrical models for analysis.

2. To employ time domain analysis to predict and diagnose transient performance

parameters of the system for standard input functions and identify the needs of different

types of controllers and compensator to ascertain the required dynamic response from the

system

3.Formulate different types of analysis in frequency domain to explain the nature of stability

of the system.

LEARNI	NG OUTCOMES & GENERIC SK	ILLS					
No.	Course Outcome	Correspondi ng PO	Bloom's Taxonomy	СР	CA	KP	Assess ment Metho ds
CO1	Categorize different types of system and identify a set of algebraic equations to represent and model a complicated system into a more simplified form.	2	Р2			1	R, Q, LT
CO2	Characterize any system in time, frequency and laplace domain to illustrate different specification of the system using. Transfer function concept.	1	P4			2	R, Q, LT
CO3	Interpret different physical and mechanical systems in terms of electrical system to construct equivalent electrical models for analysis.	3	Р3			3	R, Q, LT
CO4	Employ time domain analysis to predict and diagnose transient performance parameters of the system for standard input functions.	6	C4			7	R, Q, LT

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, LT – Lab Test, PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Experiments:

- **1.**Combustion control and heating for boiler and simulation using MATLAB toolbox
- 2.Car control with ECU
- 3.Generator inertia and RLC circuit, such as operational amplifiers
- 4.Projectile control with fin stabilization
- **5.PLC control demonstration with ladder logic programming**
- 6.Pneumatic and hydraulic circuits
- 7.Pump test bench
- 8. Solenoid, its structure and function
- **9.PID controller**
- 10.Car suspension system with spring-mass damper model and MATLAB simulation
- **11.Modeling and demonstration of 4 post car lift for electro-hydro-pneumatic control**
- 12.Heat transfer, 2 phase flow (may not be possible)
- **13.Gyroscope control**

CO-PO MAPPING

No	Course Learning Outcome PROGRAM OUTCOMES (PO)												
110.			2	3	4	5	6	7	8	9	10	11	12
CO1	Categorize different types of system and identify a set of algebraic equations to represent andmodel a complicated system into a more simplified form.		3										
CO2	Characterize any system in time, frequency and laplace domain to illustrate different specification of the system using. Transfer function concept.	2											
CO3	Interpret different physical and mechanical systems in terms of electrical system to construct equivalent electrical models for			3									

	analysis										
CO4	Employ time domain predict and diagn performance parament system for standard in	n analysis to ose transient eters of the put functions.									
Justifica	ation for CO-PO mapp	ing:									
Mappin	Mapping Corresponding Justifications Level of matching										
CO1-PO	3	In order to identify the different types of systems, the knowledge of non-linear complex engineering problem analysis would be required.									
CO2-PO	2	In order to characterize and illustrate the system, the fundamental knowledge of mathematics would be required									
CO3-PO	3 3	In order to interpret the systems, the knowledge interpretation of Engineering data is important.						In order to interpret the systems, the knowledge interpreta Engineering data is important.			
CO4-PO	06 2	Solving complex engineering problem for analyzing and applying for greater good of the society.									
TEACH	IING LEARNING STR	RATEGY									
Teaching	g and Learning Activitie	28	Engagement (hours)								
Face-to-	Face Learning										
I	Lecture		14								
I	Practical		28								
			Total 42								
Self-Dir	ected Learning										
I	Preparation of Lab Repo	10									
Preparation of Lab Test 10											
	Preparation of presentat	tion	5								
	Preparation of Quiz		5								
	Engagement in Group F	Projects	20								

Formal Assessment					
Continuous Assessment	14				
Final Quiz	1				
Total	112				
TEACHING METHODOLOGY					
Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method,					

Project Based Method

COURSE	SCHEDULE
Week-1	Exp 1: Combustion control and heating for boiler and simulation using MATLAB toolbox
Week-2	Exp 2:Car control with ECU
Week-3	Exp 3: Generator inertia and RLC circuit, such as operational amplifiers
Week-4	Exp 4:Projectile control with fin stabilization
Week-5	Exp 5:PLC control demonstration with ladder logic programming
Week-6	Exp 6: Pneumatic and hydraulic circuits
Week-7	Exp 7: Pump test bench
Week-8	Exp 8: Solenoid, its structure and function
Week-9	Exp 9: PID controller
Week-10	Exp 10: Car suspension system with spring-mass damper model and MATLAB simulation
Week-11	Exp 11: Modelling and demonstration of 4 post car lift for electro-hydro-pneumatic control
Week-12	Exp 12: Heat transfer, 2 phase flow (may not be possible)
Week-13	Exp 13: Gyroscope control
Week-14	Lab report Submission, LabViva,Quiz Test

ASSESSMENT STRATEGY							
	Components	Grading					
Continuous	Lab participation and Report	30%					
Assessment (60%)	Labtest-1, Labtest-2	30%					
	Lab Quiz	40%					
	Total Marks	100%					
REFERENCE BOOKS							
1. Introduction to Automatic Controls (2 nd edition) – Howard L. Harrison, John G. Bollinger.							
2. Control System Eng	gineering – N. S. Nise, Modern control	System – R. C. Dorf, R. C.Bishop.					

Spring/Fall Semester L-4, T-I & II

COURSE INFORMATION									
Course Code Course Title	: ME 400 :Final Year Design and Research Project	Lecture Contact Hours Credit Hours	: 12.00 : 6.00						
PRE-REQUIS	PRE-REQUISITE								
GERM-352 R	esearch Methodology								
CURRICULU	M STRUCTURE								
Outcome Base	d Education (OBE)								
SYNOPSIS/RATIONALE									
The Final Year Design and Research Project (FYDRP) aims to synergies all the previous engineering knowledge to solve real Mechanical Engineering problems in an integrated and comprehensive manner. It provides the students opportunity to apply the knowledge and skills gathered through previous course works. Student will take the primary responsibility to identify									

organize, plan and execute different tasks assigned with the analysing or designing Mechanical systems or components. Thereby the students will also learn to develop hardware solution a real-time industry related problem by working in a team of two, three or more members.

OBJECTIVE

- **1.** To learn more in-depth knowledge of the major subject/field of study, including deeper insight into current research and development work.
- 2. To identify an appropriate topic that can be designed and verified.
- 3. To investigate in order to evaluate performance of the proposed system.
- 4. To provide design experience to the students through teamwork and familiarize them

with the project management methodology

5. To plan a project and perform different tasks of project management.

6. To provide the ability to understand and redefine a given engineering problem and to develop a conceptual design through teamwork.

7. To assess professional, ethical, environmental and social impacts and responsibilities of the design project.

8. To provide students the ability to present the design project results through written technical documents and oral presentation.

No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Identify and analyse appropriate problem or topic related to Mechanical Engineering	PO2	C4	3,4	1	1	APW,R,AS G
CO2	Investigate to evaluate performance of the system.	PO4	C5	8	1	2	PW, APW

LEARNING OUTCOMES & GENERIC SKILLS

CO3	Design a solution that meets the required specification.	PO3	C6,P6	5	2,3 ,4	1	PW,APW
CO4	Incorporate the use of modern engineering tools in the design, development and verification process.	PO5	PA,A4	6	1	5	Mid Term Exam
CO5	Value ethical and professional responsibilities during the course of the Final Year Design and Research Project.	PO8	A4	7	5	2	PR, R, ASG, F
CO6	Demonstrate the understanding of the impact of the project on environment and sustainability.	PO7	C2,P2,A3	7	6		PR, Pr, R
C07	Assess social, health, safety, legal and cultural issue related to the final year design and research.	PO6	C5,P4	7			PR, Pr, R
CO8	Work Effectively in a Team.	PO9	A5	4	1	1	PW, Pr
CO9	Write professional technical document related to the topic or project and orally present the results.	PO10	A2	4	1		FPr, FR
C010	Conduct the economic analysis and estimate the cost of the final year design and research project.	PO11	C6	6			FR, FPr
C011	Verify the problem in the broadest context of technological change.	PO12	A5	7	2	3	FR, FPr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

Course Contents: Students may choose to write alone or in groups of up to 4 students.

Types of thesis:

Students can choose topics containing theoretical, empirical and/or practical aspects. For Military student officer, as per the requirement of Svc HQ, diff design project may be introduced. But irrespective of the topic chosen, the use of relevant theory and literature is fundamental to the thesis.

An empirical paper: The idea is to gather knowledge on a specific topic and to relate theory to empirical observations, e.g. by using existing data, by using questionnaires or experiments.

A case study:

A case study approach involves an analysis of a specific occurrence or process in an actual company or another type of organization. The purpose of a case study is to provide descriptions, analyses and suggested solutions to problems in relation to the case in hand. Case studies will involve the use of quantitative and/or qualitative methods for data collection.

A theoretical paper :

This type of thesis builds on a theoretical model or a generic problem. Often a theoretical thesis is based on existing literature studies in which a theoretical problem is analysed. This type of thesis is the least common.

Presenting a technical report

A technical report will be presented by the students based on their work and activities in this course

СО-РО	MAPPING												
No	Course Outcome	PROGRAM OUTCOMES (PO)											
INU.	Course Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Identify and analyse appropriate problem or topic related to Mechanical Engineering		3										
CO2	Investigate to evaluate performance of the system.				3								
CO3	Design a solution that meets the required specification.			3									
CO4	Incorporate the use of modern engineering tools in the design, development and verification process.					3							
CO5	Value ethical and professional responsibilities during the course of the Final Year Design and Research Project.								3				
CO6	Demonstrate the understanding of the impact of the project on environment and sustainability.							3					
C07	Assess social, health, safety, legal and cultural issue related to the final year design and research.						3						
CO8	Work Effectively in a Team.									3			
CO9	Write professional technical document related to the topic or project and orally present the results.										3		
CO10	Conduct the economic analysis and estimate the cost of the final year design and research project.											3	
CO11	Verify the problem in the broadest context of technological change.												3
(Numeri	cal method used for mapping which in	dica	tes 3	8 as 1	nigh	i, 2 i	as n	nedi	um a	and	1 as l	ow lev	vel of

matching)

JUSTIFICATION FOR CO-PO MAPPING							
Mapping	Level of Matching	Justification					
CO1-PO2	3	Students will learn to identify and analyse related to Mechanical Engineering	e appropriate problems				
CO2-PO4	3	Ability to investigate and Evaluate perform	mance of the system				
СОЗ-РОЗ	3	Students will be able to design a solution specification.	that meets the required				
CO4-PO5	3	Incorporating the use of modern engineer development and verification process	ing tools in the design,				
CO5-PO8	3	Students will learn to value ethic responsibilities during the course of the Research Project.	al and professional Final Year Design and				
CO6-PO7	3	Students will learn to demonstrate the in environment and sustainability	Students will learn to demonstrate the impact of the project on environment and sustainability				
CO7-PO6	3	Students will be able to assess social, health, safety, legal and cultural issue related to the final year design and research.					
CO8-PO9	3	Ability to work effectively in a Team					
CO9-PO10	3	Students will be able to write professional technical document related to the topic or project and orally present the results.					
CO10-PO11	3	Ability to conduct the economic analysis of the final year design and research proje	s and estimate the cost				
CO11-PO12	3	Students will learn to verify the problem of technological change	in the broadest context				
TEACHING L	EARNING STR	ATEGY					
Teaching and Lea	arning Activities		Engagement (hours)				
Face-to-Face Lea	rning						
84							
Self-Directed Learning 168							
Formal Assessme	Formal Assessment 11						
Total	Total 263						
ASSESSMENT	STRATEGY						
As per the guidar	nce of the supervisor	r					

Spring Semester L-4, T-1

COURSE IN	FORMATION		
Course Code	ME 401	Lecture Contact Hours	3.00
Course Title	Internal Combustion Engine	Credit Hours	3.00
PRE-REQU	ISITE		

ME 103- Thermodynamics

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course will provide the students with advanced knowledge regarding Internal Combustion Engine operation, design, thermodynamic analysis etc

OBJECTIVE

a)To analyze the approach to the engineering problem and performance analysis of internal

combustion engine

b)To study of thermodynamics, combustion, heat transfer, friction, and other factors affecting engine

power, efficiency, and emissions

c)To design and operate the characteristics of different types of engines

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Design modern internal combustion engines and differentiate among different kinds of them	1	C2,C3	1,3			ASG, T, F
CO2	Apply analytical techniques to the engineering problems and performance analysis of internal combustion engines	1, 2	C2,C3	2,3,4	1	5	ASG, T, F

CO3	Identify the thermodynamics, combustion, heat transfer, friction and other factors affecting engine power, efficiency and emissions	3, 5	C4,C5	2,3,5	2,6,		CS, T, F
CO4	Introduce environmental and fuel economy challenges facing the internal combustion engine along with future internal combustion engine technology and market trends	3,5,7	C4,C5	4,6	2,6	4	PR, T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam; CS – Case Study)

COURSE CONTENT

a. Main Contents:

- 1. Introduction
- 2. Fuels
- 3. Combustion
- 4. Fuel metering
- 5. Air capacity of engines
- 6. Performance and design
- 7. Compressors and turbines

b. Detail Contents:

Introduction: basic engine types, their operation and testing; Idealized cycles and processes; Fuels: IC engine fuels, their properties and tests; Combustion: SI engine, CI engine and gas turbine; Equilibrium charts; Exhaust gas analysis and air pollution; Fuel metering: SI engines, CI engines; Air capacity of engines: two and four stroke cycles, naturally aspirated and supercharged; Performance and design: performance of supercharged engines and un-supercharged engines, design considerations, application of principle of similitude of similitude in engine design. Compressors and turbines: compression processes, volumetric efficiency, multistage compression, intercooling; various types of compressors and gas turbines.

CO-PO MAPPING

							pp/)Cb	Δλ	OI	TCO)ME	S (PO)			
No.		Course Learning (Dutcome	1	2	3	4	5	مير 6	7	8		10	11	12	
CO1	Desig engin differ	n modern internal es and differentiat ent kinds of them	combustion e among	3	2	5		5	0	,	0		10	11	12	
CO2	Apply engine perfor comb	v analytical technic eering problems a mance analysis of ustion engines	ques to the nd f internal	3	3											
CO3	Identi comb other efficie	amics, er, friction and engine power, s			3			3								
CO4	Introd econo intern with f engino	I and fuel bing the gine along abustion market trends			3		3		3							
Instific	ration fo	or CO-PO mannin	σ٠													
			s•				.									
маррі	ing	Corresponding Level of matching					Jus		cati	ons						
CO1-P	01	3	Apply enginee design modern	pply engineering fundamental and engineering specification to esign modern internal combustion engines.												
CO2-P	201	3	Students will g internal combu	get tl Istio	he ki on en	now gine	ledg	e al	oout	the	e per	form	ance a	analy	sis of	
CO2-P	202	3	Students will b principles of m	be er hath	nable emat	e to a tics a	anal and	yze eng	eng inee	ine ring	perf g sci	form: ence	rmance using nces			
CO3-PO3 3 Students will efficiency and for health sa					tudents will develop solution for factors affecting engine power, fficiency and emissions with appropriate consideration or health safety and environmental consideration.											
CO3-P	06	3	Students will a	apply	y kno	owle	edge	to	acce	ess l	healt	h an	d safe	ty iss	ues.	
CO4-P	203	3	They will be a with appropria	ble t te co	to de onsie	sign dera	sol tion	utio s.	ons f	or i	nter	nal c	ombu	stion	engines	
CO4-P	PO5	3	Students will s environmental	elec and	t and eco	d ap nom	ply ic c	tech hall	niq eng	ues es.	to w	vithst	and th	ne		
CO4-P	07	3	They will understand and evaluate sustainability of future internal combustion engine technology and market trends													

Type and No.	Activity	Engagement Hou			
Face-to-Face Learning					
1	Lecture	40			
2	Introduction to different	2			
	manufacturing devices				
	operated in Industry				
Self-Directed Learning					
3	Non face to face learning	75			
Formal Assessments					
4	Class test and Mid-term Exam	2.5			
5	Final Exam	3			
Total		122.5			

Class Lecture, Pop quiz, Case study, Problem solving

COURSE SCHEDULE

	Topic	СТ	Remarks
1-2	Introduction: basic engine types, their operation and testing; Idealized cycles and processes;		
3-4	Fuels: IC engine fuels, their properties and tests	CT1	
5-6	Combustion: SI engine, CI engine and gas turbine; Equilibrium charts; Exhaust gas analysis and air pollution;		
7-8	Fuel metering: SI engines, CI engines	CT2	
9-10	Air capacity of engines: two and four stroke cycles, naturally aspirated and supercharged;	MID TERM	
11-12	Performance and design: performance of supercharged engines and un-supercharged engines, design considerations, application of principle of similitude of similitude in engine design.	CT3	
13-14	Compressors and turbines: compression processes, volumetric efficiency, multistage compression, intercooling; various types of compressors and gas turbines.		

COs	Assessment Method	(100%)	Remarks
	Class Assessment		
CO1	Homework/ Assignment	50	

CO ₂	Homework/ Assignment,	40	
	Class test		
CO3	Homework/ Assignment Class	70	
	test, Mid-term.		
CO4	Assignment	30	
	Exam		
CO1		50	
CO2	Einel Einen	60	
CO3	Final Exam	30	
CO4	Í T	70	
	CO3 CO4 CO1 CO2 CO3 CO3 CO4	Class test CO3 Homework/ Assignment Class test, Mid-term. CO4 Assignment CO1 CO2 CO3 CO4 Final Exam	CO2Homework/ Class testAssignment, Class40CO3Homework/ Assignment70CO4Assignment30ExamCO150CO2Final Exam60CO370

REFERENCE BOOKS

Internal combustion Engine Fundamentals – John B. Heywood
 Internal Combustion Engines (3rd edition) – Edward F. Obert
 The Internal Combustion Engine Theory and Practice - C. F. Taylor

REFERENCE SITE

N/A

Spring Semester L-4, T-I

COURSE IN	FORMATION									
Course Code Course Title	ME 402 IC Engine Sessional	Lecture Contact Hours Credit Hours	: 3.00 : 1.50							
PRE-REQUI	PRE-REQUISITE									
ME 401	ME 401									
CURRICULU	CURRICULUM STRUCTURE									
Outcome Base	Outcome Based Education (OBE)									

SYNOPSIS/RATIONAL

Introduction: basic engine types, their operation and testing; Idealized cycles and processes; Fuels: IC engine fuels, their properties and tests; Combustion: SI engine, CI engine and gas turbine; Equilibrium charts; Exhaust gas analysis and air pollution; Fuel metering: SI engines, CI engines; Air capacity of engines: two and four stroke cycles, naturally aspirated and supercharged; Performance and design: performance of supercharged engines and un-supercharged engines, design considerations, application of principle of similitude of similitude in engine design.

Compressors and turbines: compression processes, volumetric efficiency, multistage compression, intercooling; various types of compressors and gas turbines.

OBJECTIVE

1. To understand the operation of internal combustion engines.

2. To perform theoretical calculations to obtain thermodynamic efficiencies and then assess operating losses.

3. To calculate engine operating parameters.

4. To understand the implications of a trade off between performance, efficiency, emissions.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Corresponding PO	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Students will be able to identify the properties of substances on property diagrams and obtain the data from property tables.	2	Р3			1	R, Q, LT
CO2	Students will be able to define energy transfer through mass, heat and work for closed and control volume system.	1	P1			2	R, Q, LT
CO3	Students will be able to understand the basic concepts of heat engine such as temperature, pressure system, properties, process, state, cycles, thermal equilibrium, emission and engine efficiency	6,7	C2			7	R, Q, LT

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, LT – Lab Test, PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Experiments:

1.Study of an Automotive SI Engine Components

2.Study of Engine subsystems.

3.Dismantling and assembling a Diesel (CI) Engine

4.Performance test of a high speed Diesel Engine

5.Study of Diesel power plant of MIST

6.Study of a Gray marine Engine

7.Study of CATS Dynamometer (Proposed)

8.Study of VVT-i Technology of Toyota Engine

9.Study of Turbocharged Engine (Proposed)

CO-PO	CO-PO MAPPING												
No	Course Learning Outcome			PROGRAM OUTCOMES (PO)									
INO.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Students will be able to identify the properties of substances on property diagrams and obtain the data from property tables.		3										
CO2	Students will be able to define energy transfer through mass, heat and work for closed and control volume system.	3											
CO3	Students will be able to understand the basic concepts of heat engine such as temperature, pressure system, properties, process, state, cycles and equilibrium.						3	2					

Justification for CO-PO mapping:							
Mapping	Corresponding	Justifications					
	Level of						
	matching						
CO1-PO2	PO2 3 In order to identify the properties of a substance mechanics,						
		knowledge of problem analysis would be required.					
CO2-PO1 3 In order to define		In order to define energy transfer, the fundamental knowledge of					
		mathematics would be required					
CO3-PO6	3	The engineering efficiency, power, torque, and turbo charger will					
		provide the students proper knowledge how those study could					
		impact the society.					
CO3-PO7	2	Efficient IC engines will decrease the emission of toxic gases which					
		provides knowledge students about the sustainability.					

Page Break

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	14
Practical	28
	Total 42
Self-Directed Learning	
Preparation of Lab Reports	10
Preparation of Lab Test	10
Preparation of presentation	5
Preparation of Quiz	10
Engagement in Group Projects	20
Formal Assessment	
Continuous Assessment	14
Final Quiz	1
Total	112

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE	SCHEDULE						
Week-1	Introduction class						
Week-2	xp 1: Study of an Automotive SI Engine Components						
Week-3	xp 2: Study of Engine subsystems.						
Week-4	Exp 3:Dismantling and assembling a Diesel (CI) Engine						
Week-5	Exp 4:Performance test of a high speed Diesel Engine						
Week-6	Exp 5: Study of Diesel power plant of MIST						
Week-7	Exp 6:Study of a Gray marine Engine						
Week-8	Exp 7:Study of CATS Dynamometer (Proposed)						
Week-9	Exp 8: Study of VVT-i Technology of Toyota Engine						
Week-10	Exp 9: Study of Turbocharged Engine (Proposed)						
Week-11	Final Lab Report Submission						
Week-12	Lab Test						
Week-13	Viva						
Week-14	Quiz Test						

ASSESSMENT STRATEGY

	Components	Grading
Continuous	Lab participation and Report	30%
Assessment (60%)	Labtest-1, Labtest-2	30%
	Lab Quiz	40%
	Total Marks	100%

REFERENCE BOOKS

Internal combustion Engine Fundamentals – John B. Heywood
 Internal Combustion Engines (3rd edition) – Edward F. Obert
 The Internal Combustion Engine Theory and Practice - C. F. Taylor

Spring Semester L-4, T-1

CourseCode Course Title ME 405 Heating, Ventilation and Air Conditioning Lecture Contact Hours 3.00 PRE-REQUISITE None Credit Hours 3.00 CURRICULUM STRUCTURE Outcome Based Education (OBE) SYNOPSIS/RATIONALE To introduce the students with various types of refrigeration and air-conditioning systems, their components, and make the students capable of calculating cooling load of any type of room. OBJECTIVE 1) Introduction to refrigeration, its application and different refrigeration methods 2) Introduction to different components of refrigeration and air-conditioning system 3) Delineate the principles of air conditioning design, and consideration that influence the design including human comfort, weather and environmental parameters and building structur 4) Demonstrate load estimation and analysis, psychometric analysis of a system and climat data and its us LEARNING OUTCOMES & GENERIC SKILLS No. Course Outcome Correspond ing PO Bloom's Taxonomy KP CP C A Assessm Method different refrigeration and air 1.4 I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	COU	RSE INFC	ORMATION								
Course Title Heating, Ventilation and Air Conditioning Credit Hours 3.00 PRE-REQUISITE None CURRICULUM STRUCTURE Utcome Based Education (OBE) SYNOPSIS/RATIONALE Synopsis/RATIONALE Synopsis/RATIONALE Item and air-conditioning systems, their components, and make the students capable of calculating cooling load of any type of room. OBJECTIVE 1) Introduction to refrigeration, its application and different refrigeration methods Introduction to different components of refrigeration and air-conditioning system Item and and air-conditioning system 3) Delineate the principles of air conditioning design, and consideration that influence the design including human comfort, weather and environmental parameters and building structure Item and its us ILEARNING OUTCOMES & GENERIC SKILLS No. Course Outcome Correspond ing PO Bloom's Taxonomy KP CP C A Assessm Method Demonstrate knowledge on different refrigeration and air. 1,4 Item and item and and air. Item and air.	Cours	seCode	Le	cture (rs	3.00					
PRE-REQUISITE Image: Current of the students with various types of refrigeration and air-conditioning systems, their components, and make the students capable of calculating cooling load of any type of room. OBJECTIVE Introduction to refrigeration, its application and different refrigeration methods 2) Introduction to refrigeration, its application and air-conditioning system 3) Delineate the principles of air conditioning design, and consideration that influence the design including human comfort, weather and environmental parameters and building structure 4) Demonstrate load estimation and analysis, psychometric analysis of a system and climat data and its us LEARNING OUTCOMES & GENERIC SKILLS No. Course Outcome Correspond ing PO Bloom's KP CP C Assessm Method different refrigeration and air.	Cours	se Title	Heating, Ventilation a	tioning	Credit		3.00				
None CURRICULUM STRUCTURE Outcome Based Education (OBE) SYNOPSIS/RATIONALE To introduce the students with various types of refrigeration and air-conditioning systems, their components, and make the students capable of calculating cooling load of any type of room. OBJECTIVE 1) Introduction to refrigeration, its application and different refrigeration methods 2) Introduction to different components of refrigeration and air-conditioning system 3) Delineate the principles of air conditioning design, and consideration that influence the design including human comfort, weather and environmental parameters and building structure 4) Demonstrate load estimation and analysis, psychometric analysis of a system and climat data and its us LEARNING OUTCOMES & GENERIC SKILLS No. Course Outcome Correspond ing PO Bloom's Taxonomy KP CP C Assessm Method Demonstrate knowledge on different refrigeration and air 1,4 I I I	PRE-	REQUISI	TE								
CURRICULUM STRUCTURE Outcome Based Education (OBE) SYNOPSIS/RATIONALE To introduce the students with various types of refrigeration and air-conditioning systems, their components, and make the students capable of calculating cooling load of any type of room. OBJECTIVE 1) Introduction to refrigeration, its application and different refrigeration methods 2) Introduction to different components of refrigeration and air-conditioning system 3) Delineate the principles of air conditioning design, and consideration that influence the design including human comfort, weather and environmental parameters and building structure 4) Demonstrate load estimation and analysis, psychometric analysis of a system and climat data and its us LEARNING OUTCOMES & GENERIC SKILLS No. Course Outcome Correspond ing PO Bloom's Taxonomy KP CP C Assessm Method Demonstrate knowledge on different refrigeration and air 1,4 Image: different refrigeration and air Image: different refrigeration and air	None										
Outcome Based Education (OBE) SYNOPSIS/RATIONALE To introduce the students with various types of refrigeration and air-conditioning systems, their components, and make the students capable of calculating cooling load of any type of room. OBJECTIVE 1) Introduction to refrigeration, its application and different refrigeration methods 2) Introduction to different components of refrigeration and air-conditioning system 3) Delineate the principles of air conditioning design, and consideration that influence the design including human comfort, weather and environmental parameters and building structure 4) Demonstrate load estimation and analysis, psychometric analysis of a system and climat data and its us ELEARNING OUTCOMES & GENERIC SKILLS No. Course Outcome Correspond ing PO Bloom's Taxonomy KP CP C Assessmentate knowledge on different refrigeration and air 1,4	CUR	RICULUM	I STRUCTURE								
SYNOPSIS/RATIONALE To introduce the students with various types of refrigeration and air-conditioning systems, their components, and make the students capable of calculating cooling load of any type of room. OBJECTIVE 1) Introduction to refrigeration, its application and different refrigeration methods 2) Introduction to different components of refrigeration and air-conditioning system 3) Delineate the principles of air conditioning design, and consideration that influence the design including human comfort, weather and environmental parameters and building structur 4) Demonstrate load estimation and analysis, psychometric analysis of a system and climat data and its us LEARNING OUTCOMES & GENERIC SKILLS No. Course Outcome Correspond ling PO Bloom's Taxonomy KP CP C A Assessme Method Assessme Method Demonstrate knowledge on different refrigeration and air 1,4 Image: State	Outco	ome Based	Education (OBE)						_		
To introduce the students with various types of refrigeration and air-conditioning systems, their components, and make the students capable of calculating cooling load of any type of room. OBJECTIVE 1) Introduction to refrigeration, its application and different refrigeration methods 2) Introduction to different components of refrigeration and air-conditioning system 3) Delineate the principles of air conditioning design, and consideration that influence the design including human comfort, weather and environmental parameters and building structure 4) Demonstrate load estimation and analysis, psychometric analysis of a system and climat data and its us LEARNING OUTCOMES & GENERIC SKILLS No. Course Outcome Correspond ing PO Bloom's Taxonomy KP CP C A Assessme Method Demonstrate knowledge on different refrigeration and air 1,4 Image: Additional analysis Image: Additional analysis	SYN(OPSIS/RA	TIONALE								
1) Introduction to refrigeration, its application and different refrigeration methods 2) Introduction to different components of refrigeration and air-conditioning system 3) Delineate the principles of air conditioning design, and consideration that influence the design including human comfort, weather and environmental parameters and building structure 4) Demonstrate load estimation and analysis, psychometric analysis of a system and climat data and its us ELEARNING OUTCOMES & GENERIC SKILLS No. Course Outcome Correspond ing PO Bloom's Taxonomy KP CP C A Assessme Method Demonstrate knowledge on different refrigeration and air Interview of the system and air Interview of the system and air	ro int comp OBJE	troduce the onents, and ECTIVE	students with various ty make the students capa	pes of refrigera ble of calculati	ation and air- ng cooling lo	condit ad of a	ioning any typ	syster be of r	ns, th oom.	neir	
2) Introduction to different components of refrigeration and air-conditioning system 3) Delineate the principles of air conditioning design, and consideration that influence the design including human comfort, weather and environmental parameters and building structure 4) Demonstrate load estimation and analysis, psychometric analysis of a system and climat data and its us LEARNING OUTCOMES & GENERIC SKILLS No. Course Outcome Correspond ing PO Bloom's Taxonomy KP CP C Assessme Method Demonstrate knowledge on different refrigeration and air 1,4 4 4 4	1)	Introdu	ction to refrigeration, its	application an	d different re	frigera	ation m	ethod	S		
 Belineate the principles of air conditioning design, and consideration that influence the design including human comfort, weather and environmental parameters and building structure Demonstrate load estimation and analysis, psychometric analysis of a system and climate data and its us LEARNING OUTCOMES & GENERIC SKILLS No. Course Outcome Correspond Bloom's Taxonomy KP CP C A Assessme Method ing PO Demonstrate knowledge on different refrigeration and air 	2) Introduction to different components of refrigeration and air-conditioning system										
design including human comfort, weather and environmental parameters and building structure 4) Demonstrate load estimation and analysis, psychometric analysis of a system and climate data and its us LEARNING OUTCOMES & GENERIC SKILLS No. Course Outcome Correspond ing PO Bloom's Taxonomy KP CP C Assessme Method Demonstrate knowledge on different refrigeration and air Demonstrate knowledge on different refrigeration and air 1,4 Image: Note that the structure	3)	Delinea	ate the principles of air c	onditioning de	sign, and con	sidera	tion tha	at influ	lence	e the	
4) Demonstrate load estimation and analysis, psychometric analysis of a system and climat data and its us LEARNING OUTCOMES & GENERIC SKILLS No. Course Outcome Correspond ing PO Bloom's Taxonomy KP CP C Assessme Method Demonstrate knowledge on different refrigeration and air 1,4 1 1 1	de	esign incluc	ling human comfort, wea	ather and envir	onmental par	amete	rs and l	buildi	ng sti	ructure	
data and its us LEARNING OUTCOMES & GENERIC SKILLS No. Course Outcome Correspond ing PO Bloom's Taxonomy KP CP C A Assessm Method Demonstrate knowledge on different refrigeration and air Image: Correspond ing PO 1,4 Image: Correspond A 1,4 Image: Correspond B 1,4 Image: Correspond B <td>4)</td> <td>Demon</td> <td>strate load estimation an</td> <td>d analysis, psy</td> <td>chometric an</td> <td>alysis</td> <td>of a sy</td> <td>stem a</td> <td>and c</td> <td>limate</td>	4)	Demon	strate load estimation an	d analysis, psy	chometric an	alysis	of a sy	stem a	and c	limate	
LEARNING OUTCOMES & GENERIC SKILLS No. Course Outcome Correspond ing PO Bloom's Taxonomy KP CP C A Assessm Method Demonstrate knowledge on different refrigeration and air Image: Correspond ing PO Imag	da	ata and its u	IS								
LEARNING OUTCOMES & GENERIC SKILLS No. Course Outcome Corresponding PO Bloom's Taxonomy KP CP CA Assessme Method Demonstrate knowledge on different refrigeration and air Image: Corresponding PO Image: Corresponding PO Image: Corresponding PO Image: Corresponding PO KP CP CP A Assessme Method											
LEARNING OUTCOMES & GENERIC SKILLS No. Course Outcome Correspond ing PO Bloom's Taxonomy KP CP C A Assessm Method Demonstrate knowledge on different refrigeration and air Image: Correspond ing PO 1,4 Image: Correspond A 1,4 Image: Correspond A Ima											
No. Course Outcome Corresponding PO Bloom's Taxonomy KP CP CA Assessme Method Demonstrate knowledge on different refrigeration and air Image: Corresponding PO KP CP CP Assessme Method	LEAI	RNING O	UTCOMES & GENER	IC SKILLS							
ing PO Taxonomy Taxonomy A Method Demonstrate knowledge on different refrigeration and air 1,4 1,4	No.	с С	Course Outcome	Correspond	Bloom's	KP	СР	С	Ass	sessmen	
Demonstrate knowledge on different refrigeration and air				ing PO	Taxonomy			A	Μ	lethods	
		Demonstr different	ate knowledge on			1,4					

CO1	conditioning systems and their components.	1,7	C1,C2	,6, 7		ASG, F	
CO2	Explain the principles of air conditioning design and consideration that influence the design including human comfort, weather and environmental parameters and building structure.	1,2	C3,C4	2,5 ,6	1	T, ASG, F	

CO3	Fundamental understanding of load estimation and analysis, psychometric analysis of a system and climate data and its use.	1,2,10,12	C5,C6	4,5 ,6	1,2		T, ASG, F				
CO4	Knowledge on air conditioning systems, duct design methods and application criteria.1,3,7,12C5,C65,6 7,71T, ASG, C5 F										
(CP-C	Complex Problems, CA-Complex Activ	ities, KP-Know	ledge Profile, '	T – Te	st ; PR	– Proj	ect; Q – Quiz;				
A30 -	Assignment, PI – Presentation										
COUR	RSE CONTENT										
a. Ma	ain Contents:										
i.	Concept of refrigeration and its applications										
ii.	Different refrigeration methods										
iii.	Refrigeration equipment	Refrigeration equipment									
iv.	Concept of air conditioning and i	Concept of air conditioning and its uses									
v.	Cooling load calculation	Cooling load calculation									
vi.	Air distribution systems	Air distribution systems									
vii.	Air management system	Air management system									
viii.	Air conditioning equipment										

b. Detail Contents:

Concept of refrigeration and its applications. Different refrigeration methods. Analysis of vapor compression refrigeration, absorption refrigeration and air-cycle refrigeration systems. Refrigerants; Refrigeration equipment: compressors, condensers, evaporators, expansion devices, other control and safety devices. Multi-evaporator, multi-compressor systems; Low temperature refrigeration. Concept of air conditioning and its uses. Cooling load calculation;

Psychrometric analysis. Air conditioning systems; Air distribution systems; Air management system; Duct design methods, Duct layout, mechanical machinery in buildings. HVAC software. Air conditioning equipment; Application criteria; Control systems.

CO-PO MAPPING

			PROGRAM OUTCOMES (PO)											
No.	Course Learning	Outcome	1	2	3	4	5	6	7	8	9	10	1	12
													1	
	Demonstrate knowledge on													
CO1	different refrigerati	on and air	3						3					
	conditioning system													
	Explain the princi	ples of air												
	conditioning de	sign and												
	consideration that	influence the												
CO2	design including hu	man comfort,	3	3										
002	weather and	weather and environmental												
	parameters and building structure.													
	Fundamental understanding of load estimation and analysis,													
CO3				3								2		3
	psychometric analysis of a system													
001	Knowledge on air conditioning systems, duct design methods and application criteria				2				2					2
C04					3				3					2
-														
Justifica	tion for CO-PO mapp	ing:												
Mapping Corresponding		Justifications												
	Level of													
matching		Students will				1.4	~~ ~		:			~~~~		ط منب
C01-P0	1 3	conditioning systems and their components								u air				
CO1-PO	7 3	Demonstrate 1	he k	now	ledo	e of	f dif	fere	ent r	efrio	erati	ion an	d air	
	~	conditioning systems for sustainable development.												
CO2-PO	1 3	Students can l	be al	ole to	o hav	ve a	tho	ugh	t on	prin	ciple	es of a	ir	
		conditioning of	lesig	gning	g par	ame	eters	5.						

They will identify design considerations that influence human

comfort, using the principles of mathematics and sciences,

3

CO2-PO2
CO3-PO1	3	Achieve the knowledge of engineering fundamentals of cooling
	-	loads and psycholitetry.
CO3-PO2	3	reach substantiated conclusions using principles of engineering
		sciences on load estimation and psychometric analysis.
CO2 DO10	2	Communicate effectively about complex engineering activities
C03-P010	2	with the engineering community
CO2 DO12	2	Students will be able to engage in independent data analysis of
C05-P012	3	cooling load.
	2	Students will have knowledge on duct and duct design methods
C04-P01	3	and application criteria.
	2	Students will be able to develop solutions by appropriate duct
C04-P03	3	design considerations.
CO4 DO7	2	They will understand the impact of applications and solutions of
CO4-PO/	3	air conditioning systems in societal and environmental contexts.
CO4 DO12	•	Duct design and analysis will lead to life-long learning in the
CO4-PO12	2	broadest context of technological change.

TEACHING LEARNING STRATEGY				
Type and No.	Activity			

Type and No.	Activity	Engagement Hour
Face-to-Face Learning		
1	Lecture	40
2	Introduction to different manufacturing devices operated in Industry	2
Self-Directed Learning		
3	Non face to face learning	75
Formal Assessments		
4	Class test and Mid-term Exam	2.5
5	Final Exam	3
Total		122.5
TEACHING METHODOLOGY	-	
Class lecture, Assignment, Case	e study, Group discussion for proble	em solving

COURSE SCHEDULE					
Week	Торіс	СТ	Remarks		
1-2	Concept of refrigeration and its applications				

3-4	Different refrigeration methods and Refrigerants	CT1	
5-6	Refrigeration equipment: compressors, condensers, evaporators, expansion devices, other control and safety devices	CT2	
7-8	Concept of air conditioning and its uses, Air conditioning systems		
9-10	Cooling Load Calculation	MID TERM	
11-12	Air distribution systems and Duct design methods	CT3	
13-14	Air conditioning equipment; Application criteria; Control systems.		

ASSESSMENT STRATEGY

	COs	Assessment Method	(100%)	Remarks
		Class Assessmen	t	
(CO1	Homework/ Assignment	40	
(CO2	Homework/	50	
		Assignment, Case study,		
		Class test		
(CO3	Homework/	60	
		Assignment. Class test,		
		Mid-term.		
(CO4	Assignment, Case study,	30	
		Online content.		
		Exam		
(CO1		60	
(CO2	Einal Exam	50	
(CO3	rinai Exam	40	
(CO4		70	

REFERENCE BOOKS

1. Refrigeration and Air conditioning – AhmadulAmeen

2. Refrigeration and Air conditioning – R.S Khurmi

3. C P Arora, C. P., Refrigeration and Air Conditioning, 2nd Edition, Tata McGraw-Hill Publishing

Company, New Delhi, 2000

4. ASHRAE (American Society of Heating, Refrigeration and Air Conditioning) Handbooks:

Fundamentals, Refrigeration, HVAC Systems & Equipment, HVAC Application

N/A

Spring/Fall Semester L-4, T- I or II

COURSE INFORMATION						
Course Code	ME 407	Lecture Contact Hours 3.00	1			
Course Title	Advanced Thermodynamics	Credit Hours 3.00	i .			
PRE-REQUISITE						
ME-103 Thermo	odynamics					

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To provide the insights on the laws of thermodynamics, exergy and irreversibility of thermal systems, non-reactive and reactive mixtures and exergy-based power cycles.

OBJECTIVE

- 1. To impart knowledge about the concept of basic thermodynamic systems.
- 2. To impart knowledge of real gas behavior and introduction to exergy and statistical thermodynamics.
- 3. To impart knowledge on different thermodynamic property relations and their applications.

LEAI	EARNING OUTCOMES & GENERIC SKILLS								
No.	Course Outcome	Correspond ing PO	Bloom's Taxonomy	KP	СР	C A	Assessment Methods		
CO1	Understand the laws of thermodynamics applied to mixture of gases and thermodynamic potentials.	1	C1	3			Q, ASG, F		
CO2	Analyze and apply the thermodynamics laws for various thermal systems and to solve various numerical problems.	4,5	C2, C3, C5	4,6 ,8	1,2		Q, F, CS, Pr		
CO3	Evaluate the thermodynamic properties of various thermal systems.	2	C2	4	1		Q, ASG, F		
CO4	Synthesize I law and II law	2,3	C2, C3	4,5	1,2		Q, ASG, F		

	efficiency of various thermal						
	systems.						
(CP-C	Complex Problems, CA-Complex Activ	ities, KP-Know	ledge Profile, '	T – Te	st;PR	– Proj	ect; Q – Quiz;
ASG -	Assignment; Pr – Presentation; R - Re	eport; F – Final	Exam)				

COURSE CONTENT

a. Main Contents:

Basic Concepts, Thermodynamic Relations, Kinetic Theory of an Ideal Gas, Non-Reactive Gas Mixtures, Reactive Gas Mixtures, Exergy, Irreversibility, Advanced Power Cycles, Gas Power Cycles.

b. Detail Contents:

BASIC CONCEPTS: Thermodynamics - Temperature and Zeroth law of thermodynamics - First law of thermodynamics-Applications - Limitations of first law - Concept of internal energy - Second law of thermodynamics-Applications - concept of entropy-Third law of Thermodynamics.

THERMODYNAMIC RELATIONS: Introduction — Reciprocity and cyclic relations — The Maxwell's relations — The Gibbs and Helmholtz relations - The Clapeyron Equation — Applications, General relations for du, dh, ds Co-efficient of volumetric expansion - Isothermal Compressibility-Applications.

KINETIC THEORY OF AN IDEAL GAS: Kinetic theory of gases- introduction, basic assumption, molecular flux, equation of state for an ideal gas, collisions with a moving wall, principle of equipartition of energy, classical theory of specific heat capacity. Transport phenomena-intermolecular forces, The Van der Waals equation of state, collision cross section, mean free path.

NON-REACTIVE GAS MIXTURES: Introduction - Basic definitions for gas mixtures - PVT relationship for mixtures of ideal gases - Properties of mixtures of ideal gases - Entropy change due to mixing - Mixtures of perfect gases at different initial pressure and temperatures -Applications.

REACTIVE GAS MIXTURES: Introduction- Fuels and Combustion-theoretical and actual combustion processes- Enthalpy of formation and Enthalpy of reaction- First and Second law analysis of reacting systems- Applications.

EXERGY: Introduction - Availability of heat - Availability of a closed system - Availability function of the closed system - Availability of steady flow system - Availability function of open system- Applications.

IRREVERSIBILITY: Introduction - Irreversibility for closed and open system - Steady flow process — Effectiveness-Applications

ADVANCED POWER CYCLES: Vapor power cycles: - Second law analysis of vapor power cycles, Cogeneration, Binary vapor cycles, combined gas vapor power cycles-Applications.

Gas power cycles: - Second law analysis of gas power cycles-Applications, Atkinson cycle, Lenoir cycle.

CO-PO MAPPING

						PR		RA	M	OU	ГСО	MES	S (PO)	
No.		Course Outco	ome	1	2	3	4	5	6	7	8	9	10	1	12
CO1	Understand the laws of thermodynamics applied to mixture of gases and thermodynamic potentials.			3											
CO2	Analyze and apply the thermodynamics laws for various thermal systems and to solve various numerical problems.						3	2							
CO3	Eval prop syste	uate the the erties of vario	ermodynamic us thermal		3										
CO4	Synt effic syste	hesize I law a iency of vario ems	und II law us thermal		3	3									
Justific	ation	for CO-PO mapp	ing:												
Mappir	Mapping Corresponding Justifications Level of Image: Corresponding Image: Corresponding														
CO1-PC)1	3	Understanding the laws of thermodynamics applied to mixture of gases and thermodynamic potentials, will required knowledge of mathematics, natural science and engineering fundamentals.												
			mathematics	, nat	ural	sciei	nce	and	eng	gine	ering	g fun	dame	ntals.	•
CO2-PC)4	2	Students wi thermodynar	<u>, nat</u> 11 b nic p	ural e a probl	<u>scie</u> ble ems	nce to inc	and con ludi	eng duc ng o	gine et in desi	ering nves gn ai	g fun tigati nd ai	idame ions nalysi	ntals. of c s.	omple
CO2-PC)4)5	2	mathematics Students wi thermodynam Students will engineering a	<u>, nat</u> 11 b nic p l app and 1	ural e a probl ply a T to	scier ble ems ppro ols f	nce to inc pria	and con ludi ate t vario	eng duc ng o ech	gine st in desi desi niqu ther	ering nves gn a ues, 1 mal	g fun tigati nd ai resou syste	dame ions nalysi urces, em an	ntals of c s. and alysis	omple moder s.
CO2-PC CO2-PC CO3-PC	04 05 02	2 2 3	mathematics Students wi thermodynar Students will engineering a Students will various therm	<u>, nat</u> ll b nic <u>p</u> l app and l l be nal s	ural e a orobl oly a T to able yste	scier ble ems ppro ols f to e ms f	to inc pria for v value	$\frac{\text{and}}{\text{con}}$ ludi te t vario uate naly	eng duc ng o ech ous the ysis	gine et in desi niqu ther e the	ering nves gn an nes, n mal ermo	g fun tigat nd an resou syste odyna	dame ions nalysi urces, em an amic j	ntals of c s. and alysis prope	comple moder s. erties o
CO2-PC CO2-PC CO3-PC CO4-PC)4)5)2)2	2 2 3 3	mathematics Students wi Students will engineering a Students will various therm Students will systems.	, nat 11 b nic p 1 app 1 app 1 be nal s 1 be	e al probl oly a T to able yste abl	scien ble ems ppro- ols f to e ms f le to	to inc pria for v value or a	and con ludi ate t vario uate naly	eng duc ng o ech ous the ysis ze o	gine et in desi niqu ther e the effic	ering nves gn an ues, n mal ermo	g fun tigati nd ai resou syste odyna	dame ions nalysi urces, em an amic p f vari	ntals of c s. and alysis prope	omple moder s. erties c
CO2-PC CO2-PC CO3-PC CO4-PC)4)5)2)2)3	2 2 3 3 3	mathematics Students wi thermodynar Students will engineering a Students will various therm Students will systems. Student will problems.	, nat 11 b nic p 1 app and 1 1 be nal s 1 be 1 pr	e ab probl oly a T to able yste: abl	scier ble ems ppro- ols f to e ms f le to ce v	nce to inc opria for v evalue or a o an	and con ludi ate t vario uate naly aly	eng duc ng o ech ous the ysis ze o the	desi desi niqu ther e the effic	ering nves gn an ues, n mal ermo cienc	g fun tigati nd an resou syste odyna	dame ions nalysi urces, em an amic p f vari n des	ntals of c s. and alysis orope ous	omple moder s. erties c therma
CO2-PC CO2-PC CO3-PC CO4-PC CO4-PC)4)5)2)2)3 HING	2 2 3 3 3 LEARNING STR	mathematics Students wi thermodynar Students will engineering a Students will various therm Students will systems. Student will problems.	, nat nic p l app and l l be nal s l be	ural e al probl oly a T to able yste able actic	scier ble ems ppro ols f to e ms f le to ce v	nce to inc opria for v evalue for a o ar	and con ludi nte t vario uate naly aaly	eng duc ng c ech ous e the ysis ze c the	gine et in desi niqu ther ther e the effic	ering nves gn an ues, n mal ermo cienc	g fun tigati nd an resou syste odyna cy of yster	dame ions nalysi urces, em an amic p f vari n des	ntals of c s. and alysis orope ous sign	omple moder s. erties o therma relate
CO2-PC CO2-PC CO3-PC CO4-PC CO4-PC TEACH	04 05 02 02 03 HING ng and	2 2 3 3 LEARNING STR d Learning Activiti	mathematics Students wi thermodynan Students will engineering a Students will various therm Students will systems. Student will problems. RATEGY	<u>, nat</u> l b nic <u>r</u> l ap <u>r</u> and l l be nal s l be l pr	ural e al probl ly a T to able yste able actic	scier ble ems pproo ols f to e ms f le to ce v	nce to inc opria for v evalue or a o ar	and con ludi ute t vario uate naly aly	eng duc ng (ech ous the ysis. ze (the	gine t in desi niqu ther ther ther e the eeffic erma En	ering nves gn an les, 1 mal ermo cienc al sy gage	g fun tigat nd an resou syste odyna cy of yster	dame ions nalysi urces, em an amic p amic p f vari n des	ntals of c s. and alysis orope ous sign	omple moder s. erties o therma relate
CO2-PC CO2-PC CO3-PC CO4-PC CO4-PC TEACH Teachi Face-te	04 05 02 02 03 HING ng and o-Face	2 2 3 3 LEARNING STF d Learning Activiti	mathematics Students wi thermodynar Students will engineering a Students will various therm Students will systems. Student will problems. RATEGY	<u>, nat</u> l b nic <u>r</u> l ap <u>r</u> and <u>l</u> be nal s l be l pr	ural e al probl ly a (T to able yste able actic	scier ble ems ppro ols f to e ms f le to ce v	nce to inc opria for v evalue or a vario	and con ludi nte t vario uate naly aaly	eng duc ng o ech Dus the ysis. ze o the	gine t in desi niqu ther e the effic erma En	ering nves gn an ies, i mal ermo cienc al sy gage	g fun tigat nd an resou syste odyna cy of yster	dame ions nalysi urces, em an amic p amic p f vari n des	ntals of c s. and alysis orope ous sign	omple moder s. erties o therma relate
CO2-PC CO2-PC CO3-PC CO4-PC CO4-PC TEACH Teachi Face-tc Self-D)4)5)2)2)3 HING ng and p-Face	2 2 3 3 LEARNING STF d Learning Activiti e Learning	mathematics Students wi thermodynar Students will engineering a Students will various therm Students will systems. Student will problems. RATEGY es	<u>, nat</u> <u>nic p</u> <u>i app</u> <u>and i</u> <u>i be</u> <u>nal s</u> <u>i be</u> <u>i pr</u>	ural e a a probl bly a (T to able yste e abl actio	scier ble ems ppro ols f to e ms f le to ce v	nce to ince opria for vevalue for a vario	and con ludi te t vario uate naly aaly	eng duc ng o ech ous the ysis. ze o the	gine t in desi niqu ther e the effic erma	ering nves gn an ies, i mal ermo cienc al sy gage	g fun tigati nd an resou syste odyna cy of yster emen 42 75	dame ions nalysi urces, em an amic p f vari f vari n des	ntals of c s. and alysis orope ous sign	omple moder s. erties o therma relate

Total

122.5

TEACHING METHODOLOGY

Class Lecture, Pop quiz, Case study, Problem solving

COURSE SCHEDULE					
Week	Торіс	СТ	Remarks		
Lec 1-5	Thermodynamics - Temperature and Zeroth law of thermodynamics -First law of thermodynamics-Applications - Limitations of first law - Concept of internal energy - Second law of thermodynamics-Applications - concept of entropy-Third law of Thermodynamics.	CT-1			
Lec 6-12	THERMODYNAMICRELATIONS:Introduction — Reciprocity and cyclic relations— The Maxwell's relations — The Gibbs andHelmholtz relations - The Clapeyron Equation—Applications, General relations for du, dh, dsCo-efficient of volumetric expansion -Isothermal Compressibility-Applications.				
Lec 13-20	Kinetic theory of gases- introduction, basic assumption, molecular flux, equation of state for an ideal gas, collisions with a moving wall, principle of equipartition of energy, classical theory of specific heat capacity. Transport phenomena-intermolecular forces, The Van der Waals equation of state, collision cross section, mean free path.	CT-2			
Lec 21-30	NON-REACTIVEGASMIXTURES:Introduction - Basic definitions for gas mixtures- PVT relationship for mixtures of ideal gases -Properties of mixtures of ideal gases - Entropychange due to mixing - Mixtures of perfect gasesat different initial pressure and temperatures -Applications.REACTIVE GAS MIXTURES: Introduction-Fuels and Combustion-theoretical and actualcombustion processes- Enthalpy of formationand Enthalpy of reaction- First and Second lawanalysis of reacting systems- Applications.	CT-3			
Lec 31-36	EXERGY: Introduction - Availability of heat - Availability of a closed system - Availability function of the closed system - Availability of steady flow system - Availability function of				

	open system- Applications. IRREVERSIBILITY: Introduction - Irreversibility for closed and open system - Steady flow process — Effectiveness- Applications
Lec 37-42	ADVANCED POWER CYCLES: Vapor power cycles: - Second law analysis of vapor power cycles, Cogeneration, Binary vapor cycles, combined gas vapor power cycles-Applications. Gas power cycles: - Second law analysis of gas power cycles-Applications, Atkinson cycle, Lenoir cycle.

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessmen	t	
1	Assignment	20	
2	Assignment	20	
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	80	
4	Final Exam, CT, Mid	80	

REFERENCE BOOKS

1. Advanced Engineering Thermodynamics by A. Bejan, John Wiley and Sons.

2. Advanced Thermodynamics for Engineers by K. Wark, McGraw Hill.

3. Fundamentals of Thermodynamics by R.E. Sonntag, C. Borgnakke and G.J. Van Wylen, Wiley.

4. Principles of engineering thermodynamics by M.J. Moran, H.N. Shapiro, Wiley.

REFERENCE SITE

N/A

Spring/Fall Semester L-4, T- I or II

COURSE INFORMATION									
Course Code Course Title	ME 409 : Renewable Energy	Lecture Contact Hours Credit Hours	: 3.00 : 3.00						
PRE-REQUISITE									
None									
CURRICULUN	I STRUCTURE								
Outcome Based	Education (OBE)								

SYNOPSIS/RATIONALE

Reserves of non-renewable fuels; Prospects of renewable energy, and its sources and pattern of usage: Characteristics of renewable sources: intermittent, low power density etc.; use of renewable in small-scale systems.

Current technology: wind wave, tidal, passive and active solar, biological and examples of devices; Energy management, interaction of non-technical requirements (social, economic, political, environment) in engineering design and innovation; Case-study.

OBJECTIVE

- 1. To introduce renewable energy technologies and emphasize exploration of principles and concepts as well as the application of renewable energy technologies (RET).
- 2. To Explores topics such as energy consumption, the pros and cons of renewable energy, energy production and cons, energy conversion, environmental issues and concerns, electrical grid, biomass and bio fuels, geothermal, wind, power, solar power, nuclear power, and hydropower systems.

No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Identify the issues existing in the energy industry regarding conventional and non-conventional energy sources	6	C4	7	2		Q, ASG, F
CO2	Understanding of the theory behind various	1	C2	1			Q, ASG, F

LEARNING OUTCOMES & GENERIC SKILLS

	renewable energy sources								
CO3	Investigation of the case studies of various renewable energy projects that is shaping today's world	stigation of the case es of various vable energy projects 4 C4, C5 8 4 s shaping today's d							
CO4	Apply the fundamentals of renewable energy to design various renewable energy devices	2, 3	C3	1-5			Q, F		
(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)									
COUR	RSE CONTENT								
b)	Main Contents:								
	IV. Introduction to conventional and non-conventional fuel								
IV.	Introduction to conventional	and non-convent	ional fuel						
IV. V.	Introduction to conventional Solar Energy	and non-convent	ional fuel						
IV. V. VI.	Introduction to conventional Solar Energy Bio-energy	and non-convent	ional fuel						
IV. V. VI. VII.	Introduction to conventional Solar Energy Bio-energy Wind energy	and non-convent	ional fuel						
IV. V. VI. VII. VIII.	Introduction to conventional Solar Energy Bio-energy Wind energy Hydro-energy	and non-convent	ional fuel						
IV. V. VI. VII. VIII. IX.	Introduction to conventional Solar Energy Bio-energy Wind energy Hydro-energy Other Sources of renewable of	and non-convent	ional fuel						
IV. V. VI. VII. VIII. IX. c)	Introduction to conventional Solar Energy Bio-energy Wind energy Hydro-energy Other Sources of renewable of Detail Contents:	and non-convent	ional fuel						
IV. V. VI. VII. VIII. IX. c) I.	Introduction to conventional Solar Energy Bio-energy Wind energy Hydro-energy Other Sources of renewable of Detail Contents: Renewable and Conventional	and non-convent energy l energy sources	ional fuel						

devices and systems

- III. Energy from bio-mass bio-energy conversion techniques
- IV. Wind energy Conversion Wind turbine design and principles
- V. Hydro-energy conversion techniques
- VI. Other renewable energy sources
- VII. Hybrid energy systems

CO-PO MAPPING

No.	Course Outcome		PROGRAM OUTCOMES (PO)										
110.			2	3	4	5	6	7	8	9	10	11	12
CO1	Identify the issues existing in the energy industry regarding conventional and non-conventional energy sources						3						
CO2	Understanding of the theory behind various renewable energy sources	3											
CO3	Investigation of the case studies of various renewable energy projects that is shaping today's world				3								
CO4	Apply the fundamentals of renewable energy to design various renewable energy devices		3	3									

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING									
Mapping	Level of Matching	Justification							
CO1-PO6	3	Identifying the issues in current energy issues will help to grow societal responsibility in the students							

CO2-PO1	3	Renewable energy theories will include knowledge from mathematics, physics and chemistry.									
CO3-PO4	3	Students will learn to use advanced energy investigate on the current world energy studies	ergy knowledge to v issues with the case								
CO4-PO2	2	Students will learn to analyse problems energy systems	Students will learn to analyse problems on the renewable energy systems								
CO4-PO3	3	Students will learn to design various renewable energy devices									
TEACHING LE	ARNING STRAT	EGY									
Teaching and Lea	arning Activities		Engagement (hours)								
Face-to-Face Lea	rning										
			42								
Self-Directed Lea	arning		75								
Formal Assessme	ent		5.5								
Total			122.5								
TEACHING MI	ETHODOLOGY		<u> </u>								
Class Lecture, Po	p quiz, Case study,	Problem solving									

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
	1. Introduction to conventional and non- conventional fuel	CT-1	
Class 1 – 3	Basic properties — State, Process, Path, Cycle — Definitions — Pure Substance.		
Class 4 – 20	2. Solar Energy Solar radiation and its measurement — Solar thermal conversion — Solar photovoltaic devices and systems	CT-2	

Class 21 – 2	3. En teo	Bio-energy hergy from bio-mass — bio-ene chniques	ergy convers	sion		
Class 27 – 3	4. 80 W pr	Wind energy ind energy Conversion — Win inciples	d turbine de	esign and		
Class 31 – 3	5. ³⁴ H	Hydro-energy gro-energy conversion techniq		MID		
Class 35 – 4	6. Er	systems	CT -3			
ASSESSMEN	IT STR	ATEGY				
	COs	Assessment Method	(100%)	Remarks		
	1	Class Assessment	20			
	2	Assignment	20			
	2	Exam	20			
	1	Final Exam, CT	80			—
	2	Final Exam, CT, MID	80			
	3	Final Exam, CT	100			
	4	Final Exam, CT, Mid	100			

REFERENCE BOOKS

1. Energy Resources and Policy – R. C. Dorf

2. Alternative Energy Sources: A Strategy Planning guide – R. T. Sheahan

Spring/Fall Semester L-4, T- I or II

COURS	E INFORMATION									
Course C	ode ME 411		Lecture C	Contact H	Iours	3.00				
Course T	itle Combustion and Pol	lution	Credit Ho	ours		3.00				
PRE-RE	QUISITE									
ME-103:	Thermodynamics									
ME-205:	Heat and Mass Transfer									
ME -321	: Fluid Mechanics I									
CURRIC	CULUM STRUCTURE									
Outcome Based Education (OBE)										
SVNOPSIS/RATIONALE										
To provid	le the basis of thermal energy	technologies that a	are common fo	or combu	istion	and fu	iels			
and equip	the participant with the know	vledge and skills n	ecessary to add	dress the	challe	enges	of			
transition	from reliance on fossil fuel to	o increasing fraction	n of renewabl	e energy		U				
OBJECT			2 1		~					
a)	To introduce participants to	combustion; Heat	of reaction, a	diabatic	flame	temp	erature,			
	heating values, chemical com	position of produc	ts of combust	ion; Che	mistry	and I	cinetics			
	of reactions; Reaction rate and flame propagation; Structure of laminar premixed flames;									
	combustion anginas	tion; Detonation;	Combustion	in inte	inal	and e	external			
	combustion engines.									
b)	To analyze the production of	pollutants in comb	oustion system	is, Emiss	ions o	of gree	enhouse			
	gases, carbon monoxide, oxid	les of nitrogen and	Sulphur, and	other pol	lutant	s.				
c)	To develop an understandin	g of the basic pr	inciples and	concepts	of a	dvanc	ed fuel			
	combustion and control proce	ess.	-	-						
(b	To provide students with the	required skills for	analyzing ther	mal cycl	es					
u)	To provide students with the	lequired skins for a	indryzing then	inai cyci	03.					
e)	To be familiar with the fur	damental physica	l and chemic	al princi	ples r	regard	ing the			
	formation and control of air p	ollutants in industr	rial and techno	ological p	proces	ses.				
LEARNI	NG OUTCOMES & GENERI	C SKILLS								
							Assess			
No.	Course Outcome	Corresponding	Bloom's	KP	СР	CA	ment Mothe			
		PO	гахопоту				ds			
	Recognize the ongoing						40			
	role of combustion, both									
CO1	of fossil and bio-fuels, in	16	C1C2	1,3,			ASG,			
	providing a more	1,0	01,03	4,7			T,F			
	sustainable energy source									
	for society, and the									

	environmental challenges					
CO2	Explain the responsibility of engineers to the community in terms of providing a safe healthy environment.	2,3	C3	1, 5		ASG, T,F
CO3	Identify the formation mechanisms and reduction strategies of pollutant species in combustion systems and design the technology and the logic behind after-treatment of pollutants	3,7	C5,C6	5, 7		CS,T, F
CO4	Identify design trade-offs between increasing engine performance and maintaining low emission characteristics and explain the technology and the logic behind after- treatment of pollutants	2,12	C5,C6	3,4	1	PR,T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS- Case Study, F – Final Exam)

COURSE CONTENT

Introduction to combustion; Heat of reaction, adiabatic flame temperature, heatingvalues, chemical composition of products of combustion; Chemistry and kinetics of reactions; Reaction rate and flame propagation; Structure of laminar premixed flames; Explosions and fuel oxidation; Detonation; Combustion in internal and external combustion engines. Production of pollutants in combustion systems; Emissions of greenhouse gases, carbon monoxide, oxides of nitrogen and sulphur, and other pollutants. Pollution control: post-engine exhaust treatment for emission control - thermal reactors, exhaust gas recirculation, catalysis; Pollution control by modification of combustion parameters; other pollution control strategies.

CO-PO MAPPING

[
No		Course Learning C	Jutaoma	1	2	2		IKA		JU . 7		NIES	(PU)	1	10
10.		Course Learning C	Jucome	1	2	3	4	3	0	/	ð	9	10	1 1	12
CO1	Reco com fuels susta socie chall	Recognize the ongoing role of ombustion, both of fossil and bio- uels, in providing a more ustainable energy source for ociety, and the environmental hallenges to be met to achieve this explain the responsibility of							3					1	
CO2	Expl engin term envin	Explain the responsibility of engineers to the community in terms of providing a safe healthy environment			3	3									
CO3	Identify the formation mechanisms and reduction strategies of pollutant species in combustion systems and design the technology and the logic behind after-treatment of pollutants					3				3					
CO4 Identify design trade-offs between increasing engine performance and maintaining low emission characteristics and explain the technology and the logic behind after-treatment of pollutants				3										3	
Justific	ation	for CO-PO mappi	ing:												
Mappin	g	Corresponding Level of matching		Justifications											
CO1-PC)1	3	Students will	atta	in k	now	ledg	ge to	rec	ogr ols	ize t	the o	ngoing	g role	e of
CO1-PC)6	3	Contextual k source for so understandin	now ciety g of	ledg , an limi	e for d the tatic	r pro e en ons.	ovid viro	ling nm	a m enta	ore : l cha	susta allen	inable ges wi	e enei ith	gy
CO2-PC	02	3	Research lite	ratu	re or	the	res	pon	sibi	lity	of er	ngine	eers to	the	
CO2-PC)3	3	Design system	ms i	n ter	ms o	of pi	ovi	ding	gas	afe l	healt	hy env	viron	ment
CO3-PC)3	3	Develop solu in combustio	tion n sy	for stem	the r	edu	ctio	n st	rate	gies	of p	ollutar	nt spe	ecies
CO3-PC)7	3	Evaluate the pollutants for	tech r env	nolo viron	gy a men	nd l it an	logi d sı	c be ista	hino inat	d aft oility	er-tro	eatmer	nt of	
CO4-PC	02	3	Identification low emission and engineer	for cha	incr tracto scier	easi erist ices.	ng e ics ι	ngin Isin	ne p g fii	erfo rst p	orma orinc	nce a iples	and m of ma	ainta ithem	ining natics
CO4-PC	012	3	Explanation treatment of	of th pollu	le teo	chno s wi	logy 11 be	y an e rec	d th cogi	le lo nize	gic l d foi	oehir r life	nd afte long le	er- earni	ng

EACHING LEARNING STRATEGY							
Type and No.	Activity	Engagement Hour					
Face-to-Face Learning							
1	Lecture	40					
2	Introduction to different manufacturing devices operated in Industry	2					
Self-Directed Learning							
3	Non face to face learning	75					
Formal Assessments							
4	Class test and Mid-term Exam	2.5					
5	Final Exam	3					
Total		122.5					

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE SCH	EDULE		
Week	Торіс	СТ	Remarks
1-3	Introduction to combustion; Heat of reaction, adiabatic flame temperature, heating values, chemical composition of products of combustion; Chemistry and kinetics of reactions;	CT1	
4-5	Reaction rate and flame propagation; Structure of laminar premixed flames; Explosions and fuel oxidation;		
6-7	Detonation; Combustion in internal and external combustion engines.	CT2	
8-10	Production of pollutants in combustion systems; Emissions of greenhouse gases, carbon monoxide, oxides of nitrogen and	MID	

	sulphur, and other pollutants		
11-12	Pollution control: post-engine exhaust treatment for emission control – thermal reactors, exhaust gas recirculation, catalysis;	CT3	
13-14	Pollution control by modification of combustion parameters; other pollution control strategies		

ASSESSMI	ENT STI	RATEGY		
	COs	Assessment Method	(100%)	Remarks
		Class Assessmen	ıt	
	CO1	Assignment, CT	60	
	CO2	СТ	30	
	CO3	MID	40	
	CO4	Group discussion,	30	
		assignment		
		Exam		
	CO1	FINAL	40	
	CO2		70	
	CO3		60	
	CO4		70	
	C04		/0	

REFERENCE BOOKS

1. Industrial Combustion Pollution and Control - Charles E. Baukal, Jr.

2. Combustion Engineering – G L Borman, K. W Ragland, Publisher – McGraw-Hill

International

REFERENCE SITE

N/A

Spring/Fall Semester L-4, T-I or II

COURSE INFORMATION																
Course Course	e Code e Title	: ME413 : Energy and Envir	onment	Lecture Conta Credit Hours	ict Hours		act Hours		ontact Hours urs		tact Hours s		ecture Contact Hou redit Hours		3.00 3.00	
PRE-REQUISITE																
N/A	N/A															
CURE	RICULU	M STRUCTURE														
Outco	me Base	d Education (OBE)														
SYNC)PSIS/R	ATIONALE														
This c transp health	This course examines some environmental management aspects of atmospheric resources, energy, transportation, manufacturing and food production in the context of natural resources, human health, and sustainable practices.															
OBJE	CTIVE															
1. To	provide	a deep understanding	g of the issues of	energy produc	tion, tr	ansm	ission	and usage.								
2. To pri	o discuss inciples g	qualitatively and quar coverning the transfor	ntitatively, information of energ	med by a work y from one form	ing kno m to an	owled other	ge of t	he physical								
3. To	analyze	the consequences of	today's energy c	onsumption												
TRAD				7												
LEAR	KNING (DUTCOMES & GEI	NERIC SKILL	5												
No.	Co	urse Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods								
	Demon	strate knowledge of ional and														

CO1	Demonstrate knowledge of conventional and renewable energy technologies and their applications	4,12	C2	4		Q, ASG, F
CO2	Demonstrate knowledge of Oil reserve, current status, geopolitical issue related to oil reserve	6,7	C4	7		Q, ASG, F

CO3	Environmental impact of using fossil fuel specially oil	7	C4	7			Q, F, CS
-----	---	---	----	---	--	--	----------

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- **1.** Various type of energy sources
- 2. Oil field, Geopolitics, Extraction methods
- 3. Environmental Impact

b. Detail Contents: The Future, Energy Myths & a Brief History of Energy, Electricity& Radiant
Energy Heat engines & entropy" and "Technological Fixes Technological Fixes, The future and
The Origin of Oil, Oil Reservoirs and Oil Traps, Finding It, Drilling Methods, Size and
Discoverability of Oil Fields, The Future of Fossil Fuels, Alternative Energy Sources ,Wealth,
Resources, and Power: The Changing Parameters of Global Security, Oil, Geography, and War:
The Competitive Pursuit of Petroleum Plenty, Oil Conflict in the Persian Gulf, Environmental
Impact

CO-PO MAPPING

No	PROGRAM OUTCOMES (PO)												
110.	Course Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Demonstrate knowledge of conventional and renewable energy technologies and their applications				3								2
CO2	Demonstrate knowledge of Oil reserve, current status, geopolitical issue related to oil reserve						2	2					
CO3	Environmental impact of using fossil fuel specially oil							3					

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATI	ON FOR CO-PC) MAPPING				
Mapping	Level of Matching	Justification				
CO1-PO4	3	Students will learn about various energy engineering practices related to those	y sources and			
CO1-PO12	2	Students will go through literature related to energy crisis and other related issues				
CO2-PO6	2	Students will go through various societal issue related to oil extraction				
CO2-PO7	2	Students will learn the environmental impact of fossil fuel extraction				
CO3-PO7	3	Students will learn the environmental impact of using excess amount of fossil fuel				
TEACHING L	EARNING STR	ATEGY				
Teaching and Learning Activities			Engagement (hours)			
Face-to-Face Le	earning					

42

Self-Directed Learning	75
Formal Assessment	5.5
Total	122.5
TEACHING METHODOLOGY	
Class Lecture, Pop quiz, Case study, Problem solving	

COURSE SCHEDULE

Lecture	Торіс	СТ	Remarks
01-03	The Future of Energy	01	
04-06	Energy Myths & a Brief History of Energy," "Electricity & Radiant Energy	-	
07-09	Heat engines & entropy" and "Technological Fixes		
10-12	Technological Fixes," "The future revisited" and "Annotated Bibliography		
13-15	Overview" and "The Origin of Oil	02	
16-18	Oil Reservoirs and Oil Traps		
19-21	Oil Exploration		
22-24	Drilling Methods	03	
25-27	Size and Discoverability of Oil Fields		
28-30	The Future of Fossil Fuels Alternative Energy Sources	Mid	

31-33	"Wealth, Resources, and Power: The Changing Parameters of Global Security		
34-36	Oil, Geography, and War: The Competitive Pursuit of Petroleum Plenty		
37-39	Oil, Geography, and War: The Competitive Pursuit of Petroleum Plenty	04	
40-42	Energy Conflict in the Caspian Sea Basi		

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessmen	nt	
1	Assignment	20	
2	Assignment	20	
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	100	
4	Final Exam. CT. Mid	100	

REFERENCE BOOKS

1) Energy and Environment- Wiley Book Series

Spring/Fall Semester L-4, T-I or II

COURSE INF	ORMATION		
Course Code Course Title	ME 415 Advanced Programming with MATLAB	Lecture Contact Hours Credit Hours	: 3.00 : 3.00

PRE-REQUISITE

ME 263, CSE 171

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This module exposes students to the depth and breadth of modern programming practice, with the goal of making students better programmers. It is, however, an advanced level module in which some advanced programming concepts are taught.

OBJECTIVE

1. To review of basic MATLAB features, class organization and functionality

2. To study about advanced graphical features of MATLAB. Effective use of programs written in C, FORTRAN and use of SIMULINK.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcomes	Correspondin g PO	Bloom' s Taxono my	KP	СР	CA	Assessment Methods
CO1	Understand some advanced programming concepts	2	C1,C2	1,2			Q, ASG, F
CO2	Analyse a problem and determine what problem elements to represent as functions or objects	3	C3	3			Q, ASG, F

CO3	Write the simplest possible program that solves a given problem while explaining to the reader how it solves that problem using MATLAB	4	C1,C3	4	1	Q, F, CS
CO4	Develop programs with networking and multithreading	7	C3,C4	6	1,2	Q, F, CS, Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam

COURSE CONTENT

a. Main Contents:

- **1.** Advanced MATLAB syntax
- **2.** Graphics/Graphical User Interface
- **3.** ODE solver suite in MATLAB
- **4.** Intro to C, CMEX interface
- **5.** Java and Java classes in MATLAB

b. Detail Contents:

Advanced MATLAB syntax; Object Oriented Programming, Handle Graphics/Graphical User Interface. Project brainstorming, Building, ODE solver suite in MATLAB, Simulink architecture and programming, Intro to C, CMEX interface, Java and Java classes in MATLAB, XML in MATLAB.

СО-РО	MAPPING													
No	Course Outcome			PR	ROG	GRA	M	OU.	ГСО	ME	S (PC))		
110.	Course Outcome	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	Understand some advanced programming concepts		3											
CO2	Analyse a problem and determine what problem elements to represent as functions or objects			2										
CO3	Write the simplest possible program that solves a given problem while explaining to the reader how it solves that problem using MATLAB				3									
CO4	Develop programs with networking and multithreading							2						

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATI	ON FOR CO-PO) MAPPING						
Mapping	Level of Matching	Justification						
CO1-PO4	3	Student will understand some advanced p	Student will understand some advanced programming concepts					
СО2-РО3	2	After this course students will gain an abi problem and determine what problem eler functions or objects	er this course students will gain an ability of analysing a blem and determine what problem elements to represent as ctions or objects					
CO3-PO4	3	Students adroit at writing the simplest possible solves a given problem while explaining the solves that problem using MATLAB	ssible program that to the reader how it					
CO4-PO7	2	Student will develop programs with netwo multithreading	orking and					
TEACHING L	EARNING STR	ATEGY						
Teaching and L	earning Activities		Engagement (hours)					
Face-to-Face Le	earning							
			42					

Self-Directed Learning	75
Formal Assessment	5.5
Total	122.5
TEACHING METHODOLOGY	
Class Lecture, Pop quiz, Case study, Problem solving	

Week	Торіс	СТ	Remarks
Class 1-9	Advanced MATLAB syntax	CT 01	
Class 10-15	Object Oriented Programming, Handle Graphics/Graphical User Interface	_	
Class 16- 25	Project brainstorming	CT 02	
Class 26- 29	Building ODE solver suite in MATLAB	-	
Class 30-34	Simulink architecture and programming	MT	
Class 35-36	Intro to C, CMEX interface	CT 03	
Class 37-42	Java and Java classes in MATLAB, XML in MATLAB	CT 04	

ASSESSMENT STRATEGY

CO	Assessment Method	(100%)	Remarks
S)	
	Class Assessmer	nt	
1	Assignment	20	
2	Assignment	20	
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	80	
4	Final Exam, CT, Mid	80	

REFERENCE BOOKS

- 2) Introduction to Optimum Design Jasbir Singh Arora
- 3) Numerical Methods for Engineers and Scientists Using MATLAB Ramin S. Esfandiari
- 4) MATLAB Programming for Engineers Stephen J Chapman

Spring/Fall Semester L-4, T-I or II

COURSE INF	ORMATION		
Course Code Course Title	ME 417 Engineering Multiphase Flow	Lecture Contact Hours Credit Hours	: 3.00 : 3.00
PRE-REQUIS	SITE		
ME 321, ME 2	205		
CURRICULU	M STRUCTURE		
Outcome Base	d Education (OBE)		
SYNOPSIS/R	ATIONALE		
This course is	s designed to provide stu	dents with a strong back	ground on fundamental fluid

This course is designed to provide students with a strong background on fundamental fluid mechanics the necessary understanding of the dynamics of multiphase flow to carry out research in their area of interest. Particular emphasis will be placed on bubble and particle dynamics, including sediment transport, cavitation, atomization and other environmental and industrial processes. Although we will cover both Eulerian-Eulerian (two fluid) models and Eulerian-Lagragian (discrete particles) models, most of the material concentrates on the study of a discrete phase (particles, droplets or bubbles) in a continuous phase. Topics will include Basset-Boussinesq-Oseen equation of motion for a particle in a non-uniform flow, particle interactions with turbulence, inertial clustering, cavitation and bubble dynamics, droplet breakup, collisions and coalescence, and surface tension effects.

OBJECTIVE

1. To covers the common background material and emphasizes the latest empirical and mechanistic modelling, computational and instrumentation aspects of multiphase flows

2.To design and operate different type of multiphase flow reactors will be introduced and their functioning, advantage and disadvantages and challenges along with future direction of research will be discussed

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcomes	Correspondin g PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Basic background of multiphase models for stratified, dispersed, and granular flow phenomena, mostly in technological context, both in 1-D and multidimensional settings.	4	C1,C2	2			Q, ASG, F
CO2	Candidates are able to work with state of the art multiphase models, and with related numerical simulations, in a wide variety of problems from mechanical, metallurgical, chemical - and petroleum engineering.	3	C1,C2,C4	1,3	4		Q, ASG, F
CO3	Understanding the basic mechanistic - and thermodynamic concepts behind typical multiphase models, and ability to apply this - along with current computational tools - to further research and development in science and technology	2	C2,C3	4	2		Q, F, CS, Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam

COURSE CONTENT

a. Main Contents:

- 1. Fundamental fluid mechanics and heat, mass, and energy transport in multiphase flows
- 2. Liquid/vapor/gas (LVG) flows
- **3.** Models of LVG flows
- 4. Fluid/structure interactions
- 5. Discussion of two-phase flow problems in conventional, nuclear, and geothermal power

plants marine hydrofoils, and other hydraulic systems

b. Detail Contents:

Fundamental fluid mechanics and heat, mass, and energy transport in multiphase flows. Liquid/vapor/gas (LVG) flows, nucleation, bubble dynamics, cavitation and boiling flows, models of LVG flows; instabilities, dynamics, and wave propagation; fluid/structure interactions. Discussion of two-phase flow problems in conventional, nuclear, andgeothermal power plants, marine hydrofoils, and other hydraulic systems.

CO-PO MAPPING

No. Course Outcome			PR	ROG	RA	MO	DU.	ГСО	ME	S (PC))		
110.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Basic background of multiphase models for stratified, dispersed, and granular flow phenomena, mostly in technological context, both in 1-D and multidimensional settings.				3								
CO2	Candidates are able to work with state of the art multiphase models, and with related numerical simulations, in a wide variety of			2									

	problems from mechanical, metallurgical, chemical and petroleum engineering.							
CO3	Understanding the basic mechanistic - and thermodynamic concepts behind typical multiphase models, and ability to apply this along with current computational tools to further research and development in science and technology	3						

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING							
Mapping	Level of Matching	Justification					
CO1-PO4	3	Student will be adroit at the background of multiphase models for stratified, dispersed, and granular flow phenomena, mostly in technological context, both in 1-D and multidimensional settings.					
СО2-РОЗ	2	Candidates will be able to work with state of the art multiphase models, and with related numerical simulations, in a wide variety of problems from mechanical, metallurgical, chemical and petroleum engineering.					
СО3-РО2	3	Student will understand the basic mechanistic - and thermodynamic concepts behind typical multiphase models, and ability to apply this along with current computational tools to further research and development in science and technology					
TEACHING LEARNING STRATEGY							
Teaching and Lo	Engagement (hours)						
Face-to-Face Le							
	42						
Self-Directed Le	75						

Formal Assessment	5.5
Total	122.5
TEACHING METHODOLOGY	
Class Lecture, Pop quiz, Case study, Problem solving	

COURSE SCHEDULE Topic CT Remarks Week Fundamental fluid mechanics and heat, mass, CT 01 Class 1-9 and energy transport in multiphase flows Liquid/vapor/gas (LVG) flows Class 10-15 nucleation, bubble dynamics, cavitation and CT 02 Class 16-25 boiling flows , models of LVG flows; instabilities, dynamics, Class 26- 29 and wave propagation fluid/structure interactions MT Class 30-34 Discussion of two-phase flow problems in CT 03 conventional, nuclear, and geothermal power Class 35-36 plants, marine hydrofoils, and other hydraulic systems. Discussion of two-phase flow problems in CT 04 conventional, nuclear, and geothermal power Class 37-42 plants, marine hydrofoils, and other hydraulic systems. ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessmen		
1	Assignment	20	
2	Assignment	20	

		Exam							
	1	Final Exam, CT	80						
	2	Final Exam, CT, MID	80						
	3	Final Exam, CT	80						
	4	Final Exam, CT, Mid	80						
REFERENCE BOOKS									
1. Multiphase flow an	nd Fluio	dization - DimitriGidaspow	Brennen	, C.E. Fundar	mentals of Multiphase				
Flow									
2. Crowe, C.T. "Multiphase Flow Handbook". Taylor & Francis, Boca Raton									

Spring/Fall Semester L-4, T- I or II

COURSE INFORMATION								
Course Code Course Title	ME 419 Introduction to Nanomaterials and Nanotechnology	Lecture Contact Hours Credit Hours	: 3.00 : 3.00					
PRE-REQUISITE								
None								
CURRICULU	M STRUCTURE							
Outcome Based Education (OBE)								
SYNOPSIS/RATIONALE								
This introductory course in nanomaterials and nanotechnology addresses the needs of engineers to								

This introductory course in nanomaterials and nanotechnology addresses the needs of engineers to know the special phenomena and potentials of nanomaterials. The underlying physical laws, material behavior in the nanoscale, fabrication, application and analysis of properties is elaborated on. Top-down and Bottom-up processes are discussed, along with their pros and cons. This will give the student engineer the requisite knowledge to pursue work or research in the future in a related field.

Engineering applications of nanomaterials for novel products, with emphasis on eco-friendly and often biomedical use is covered. Special topics deal with synthesis, characterization techniques, thermal, optical, magnetic and electronic properties, processing and, finally, applications that are likely in the near future. The course shall also engender ethical thinking and appreciation of green

technology in the students.

OBJECTIVE

- **a.** To introduce the fundamental physical concepts and laws governing nanoscale technology and the nano-domain.
- b. To elaborate on different types of Micro and Nano fabrication and processing technologies.
- **c.** To familiarize students with various characterization and testing of nanomaterials and their associated properties.
- **d.** To disseminate knowledge of state-of-the-art applications of nanomaterials with special emphasis to environmentally friendly and biomedical uses.
- e. To develop ethical thinking and analytical abilities related to the use (of nanotechnology), recycling and disposal of nanomaterials.

LEAF	LEARNING OUTCOMES & GENERIC SKILLS									
No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods			
CO1	Explain the fundamental physical phenomenon and principles governing nanotechnology and nanomaterials properties	1	C2	2	1		Q, ASG, F			
CO2	Demonstrate understanding of the various types of Fabrication processes involved in micro and nano fabrications.	2	C3,C4	3,4	1		Q, ASG, F			

CO3	Familiarize with different characterization and mechanical tests of nanomaterials	2	C4	2,3	4		Q, F, CS	
CO4	Understand and Analyze the potential of Nano- Science and Technology in Industrial, biomedical and environmentally friendly applications	6,7	C2, C4	2	1,5		Q, F, CS, Pr	
CO5	Develop ethical thinking and judgement pertaining to use of nanomaterials and demonstrate ethical conduct in class.	8	C4,C5	3,5			Q,F	
(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ;								

Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- i. Introduction to the multi-disciplinary field of nanotechnology
- ii. MNT Materials
- iii. Experimental techniques and application of this recent vastly improved sector
- iv. Understanding of the Fabrication Processes, Metrology and Characterization

b. Detail Contents:

. General and Broad Introduction to the multi-disciplinary field of nanotechnology (Mirco and Nano Technology), Basic knowledge of physical phenomena, theoretical concepts, MNT Materials (Metal, Polymer, Ceramics, Quartz and Others), Experimental techniques behind the recent vastly improved sector, Fabrication Process (Micro, Nano Fabrication, Photolithography, Physical Vapor Deposition, Chemical Deposition, Packaging and Bonding, Assembly and Commercial Fabrication Process, AFM, Chemical reduction and dispersion process), Metrology and Characterization (SEM, TEM, FTiR, AFM etc.), recent scientific and technological applications with focus on industrial, biomedical and eco-friendly use. Ethical considerations, especially those pertaining to aerosol or inhalation of nanoparticles and effect on habitat.

CO-PO MAPPING

No	Course Outcome	PROGRAM OUTCOMES (PO)											
110.			2	3	4	5	6	7	8	9	10	11	12
CO1	Explain the fundamental physical phenomenon and principles governing nanotechnology and nanomaterials properties	3											
CO2	Demonstrate understanding of the various types of Fabrication processes involved in micro and nano fabrications		2										
CO3	Familiarize with different characterization and mechanical tests of nanomaterials		3										
CO4	Understand and Analyze the potential of Nano-Science and Technology in Industrial, biomedical and environmentally friendly applications						2	2					
CO5	Develop ethical thinking and judgement pertaining to use of nanomaterials and demonstrate ethical conduct in class.								3				

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING							
Mapping	Level of Matching	Justification	Justification				
CO1-PO1	3	Explaining the fundamental physical phenomenon and principles governing nanotechnology and nanomaterials properties will enable the students to gain knowledge about nano-materials and nano-technology					
CO2-PO2	2	Understanding of the various types of Fabrication processes will help the students to solve complex problems related to mirco and nano fabrications					
CO3-PO2	3	Students will learn about mechanical testing methods of nano- materials					
CO4-PO6	2	Students will learn about the potential of nanotechnology in industrial fields which will help them in professional career.					
CO4-PO7	2	Students will learn about the effect of nanomaterials and nanotechnology on the environment.					
CO5-PO8	3	Students will have knowledge about the use and applications of nanomaterials					
TEACHING L	EARNING STR	ATEGY					
Teaching and L	earning Activities		Engagement (hours)				
Face-to-Face Le	earning						
	42						
Self-Directed L	75						
Formal Assessment 5.5							
Total 122.5							
TEACHING METHODOLOGY							
Class Lecture, Pop quiz, Case study, Problem solving							
COURSE SCHEDULE

Week	Торіс	СТ	Remarks
Class 1-6	General and Broad Introduction to the multi- disciplinary field of nanotechnology (Mirco and Nano Technology)	CT 01	
Class 7-12	Basic knowledge of physical phenomena, theoretical concepts.		
Class 13-15	MNT Materials (Metal, Polymer, Ceramics, Quartz and Others)	CT 02, MT	
Class 16-27	Experimental techniques behind the recent vastly improved sector, Fabrication Process (Micro, Nano Fabrication, Photolithography, Physical Vapor Deposition, Chemical Deposition, Packaging and Bonding, Assembly and Commercial Fabrication Process, AFM, Chemical reduction and dispersion process). Review for Mid Term Exam		
Class 28-34	Metrology and Characterization	CT 03	
Class 35-42	Recent scientific and technology work in the Nano world to demonstrate the potential of nanoscience and industrial applications of nanotechnology.	CT 04	

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessmer		
1	Assignment	20	
2	Assignment		
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	80	
4	Final Exam, CT, Mid	80	
5	Final Exam, CT, Mid	80	

REFERENCE BOOKS

- 1. Nanomaterials: An introduction to synthesis, properties and applications-Dieter Vollath, 2nd Ed., Wiley publications, 2013.
- 2. Nanoparticles, nanocomposites and nanomaterials, an introduction for beginners-Dieter Vollath, 1st Ed., Wiley-VCH, 2013.
- 3. Nanomaterials Characterization, an introduction-RatnaTantra (Editor), Wiley publications, 2016.

Fall Semester L-4, T-1

COURSE INFORMATION											
Course Code Course Title	: ME 421 : Fluid Machinery	Contact Hours Credit Hours	: 3.00 : 3.00								
PRE-REQU	PRE-REQUISITE										
ME 321											
CURRICUI	LUM STRUCTURE										
Outcome Ba	sed Education (OBE)										
SYNOPSIS/	RATIONALE										
machinery the pumps and the and fluid am	To introduce the students to different fluid power driven machineries and components, Fluid turbo- machinery theory, performance characteristics of centrifugal and axial flow fans, compressors, pumps and turbines, fluid vibrations and sound, water hammer, introduction to fluid power controls and fluid amplifiers, operating principle and design.										
OBJECTIV	Е										
1. To pr Mech	 To provide students with the skills, knowledge and attitudes required to apply Fluid Mechanics theories in practice. 										
2. To study the principles to a variety of real-world engineering applications including simple flow networks and pump & turbine design.											
3. To an	alyse different practical engi	neering machineries									

LEAR	LEARNING OUTCOMES & GENERIC SKILLS						
No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Demonstrate knowledge on several types of turbomachines and their principal applications	1,7	C1, C2	1,4			Q, ASG, F
CO2	Analyse performance/ efficiency of different turbo machineries.	1,2	C4	2,5	1		Q, F
CO3	Design different turbomachines for desired application.	3,12	C3, C6, A5	5,6	1,2		Q, F, CS

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

i. Types of fluid machinery; ii. Euler pump/turbine equation; iii. Impulse and reaction turbines; iv. Centrifugal and axial flow pumps; v. Dimensional analysis applied to fluid machinery; vi. Reciprocating pump, gear, and screw pumps; vii. Fan, blower, and compressor; viii.Hydraulic transmission; ix. Wind turbines.

b. Detail Contents:

Types of fluid machinery; Rotodynamic and positive displacement machines; Velocity diagrams and Euler pump/turbine equation; Impulse and reaction turbines; Centrifugal and axial flow pumps; Deep well turbine pumps; Dimensional analysis applied to fluid machinery: specific speed, unit power, unit speed, unit discharge; Performance and characteristics of turbines and pumps; Cavitation; Reciprocating pump, gear and screw pumps; Fans, blowers and compressors; Hydraulic transmission: fluid coupling and torque converter; System analysis and selection of fluid machine; Wind turbines.

CO-PO MAPPING PROGRAM OUTCOMES (PO) Course Outcome No. 1 2 3 4 5 6 7 8 9 10 11 12 Demonstrate knowledge on various types of turbomachines and their CO1 3 3 principal applications Analyze performance/efficiency of different turbo machineries. CO2 3 3 Design different turbomachines for CO3 3 3 desired application.

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level of Matching	Justification
CO1-PO1	3	Student will be able to describe various aspects and components of a fluid machinery.
CO1-PO7	3	Students will be able to identify which type of system and system components should be used under different need.
CO2-PO1	3	Students will be able to determine the performance of a hydraulic or turbo machines in operation using different system parameters.
СО2-РО2	3	Students will able to analyzeturbomachines engineering science like velocity triangle and various diagrams
СОЗ-РОЗ	3	Students will acquire knowledge of designing fluid machineries to meet specific requirements
CO3-PO12	3	Students will go through various handbook for design practice

TEACHING LEARNING STRATEGY							
Teaching and Learning Activities Engagement (hour							
Face-to-Face Learning							
			42				
Self-Directed Lean	rning		75				
Formal Assessmen	nt		5.5				
Total							
TEACHING MET	HODOLOGY auiz. Case study. Problem solving.						
COURSE SCHE	DULE						
Week	Торіс		СТ				
1-5	Types of fluid machinery; Rotodynamic and positive displacement machines; Velocity diagrams and Euler pump/turbine equation;		CT 01				
Impulse and reaction turbine; Centrifugal and axial flow pump; Deep well turbine pump;6-8							
		CT 02					
9-12 Dimensional analysis applied to fluid machinery: specific speed, unit power, unit speed, unit discharge;Performance and characteristics of turbines and pumps;							
Cavitation; Reciprocating pump, gear and screw pumps; Fans, blowers and compressors, Hydraulic transmission: fluid coupling and torque converter ;system analysis and Wind turbines							
			МТ				

ASSESSMENT STRATEGY						
	COs	Assessment Method	(100%)	Remarks		
		Class Assessmen	nt			
	1	Assignment	20			
	3	Assignment	30			
		Exam	Exam			
	1	Final Exam, CT	80			

	2	Final Exam, CT, MID	80				
	3	Final Exam, CT	70				
	4	Final Exam, CT, Mid	80				
REFERENCE BOOKS							
1. Fluid Mechanic	s – J. F	. Douglas, J. M. Gaesirek,	J. A. S. W	affield.			
2. Fluid Mechanics (including Hydraulic Machines) by Jain A.K							
3. Hydraulic Machines – Dr. Md. Quamrul Islam							

Spring/Fall Semester L-4, T- I or II

COURSE INFORMATION								
Course Code Course Title	ME 423 Fluid Engineering	Lecture Contact Hours Credit Hours	: 3.00 : 3.00					
PRE-REQUIS	SITE							
ME-323	ME-323							
CURRICULU	M STRUCTURE							
Outcome Base	Outcome Based Education (OBE)							
SYNOPSIS/RATIONALE								
To introduce the students with the application of fluid mechanics knowledge in design of plumbing system, fountain design, designing various power enhancement device like hydraulic jack, intensifier etc.								

OBJECTIVE

- 1. Introduce the student with the integral form of conservations equations.
- 2. To give an idea of plumbing system design.
- 3. To give an idea of various types of fountains and basic design principle
- 4. To provide elementary idea of hydraulic equipment design principle.

LEAR	LEARNING OUTCOMES & GENERIC SKILLS						
No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Demonstrate knowledge on integral form of conservation equations and their applications	1,2	C1, C3	3			Q, ASG, F
CO2	Demonstrate knowledge to solve simple flow problem using Navier Stokes Equation	2,12	C3	2,4			Q, ASG, F
CO3	Design of plumbing system in tall buildings and fountains	6,12	C5, C6	6,7	1,2		Q, F, CS
CO4	Design of various hydraulic machines	3,12	C5, C6, A5	4,6	1,2		Q, F, CS, Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- 1. Integral form of conservation equaiton
- 2. Solution of Navier Stokes equation in simple flow conditions
- 3. Piping system design in buildings
- 4. Fountain design
- 5. Hydraulic machines design

b. Detail Contents:

Conservation of mass, momentum and energy; Solution of Navier Stokes equation in simple flow case like Couttee flow, flow in pipes, and rectangular channel, Stokes first problem, Flow in 2-D and axisymmetric ducts; Laminar jets; Stability of laminar flow; Orr-Sommerfield equation; Flow in branching pipe systems, Hardy Cross Method; Plumbing system design, Fountains and basic design principle, Unsteady flow in pipes; Water hammer; Economics of pipe systems; Hydraulic machines: press, intensifier, ram.

CO-PO MAPPING

No	No. Course Outcome		PROGRAM OUTCOMES (PO)										
110.	Course Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Demonstrate knowledge on integral form of conservation equations and their applications.	3	3										
CO2	Demonstrate knowledge to solve simple flow problem using Navier Stokes Equation		3										3
CO3	Design of plumbing system in tall buildings and fountains						2						3
CO4	Design of various hydraulic machines			3									3

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level of Matching	Justification
CO1-PO1	3	Developing integral form of conservation equation will provide knowledge from physics and mathematics to build up engineering fundamental equations.
CO1-PO2	3	Application of conservation equation will enable the students to analyse problems arise in various engineering problems
CO2-PO2	3	Applying Navier Stokes equation for various flow field will enable the students to solve flow problems
CO2-PO12	3	Students will go through some research literature to see the application of Navier Stokes equation in various flow problem
CO3-PO6	2	Students will learn various codes and practices used in plumbing design
CO3-PO12	3	Students will go through various handbook for design

			practice								
С	O4-PO3	3	Student will practice hydraulic jack and ram design problems								
С	O4-PO12	3	Students will go through various handbook for design practice								
T	TEACHING METHODOLOGY										
С	Class Lecture, Pop quiz, Case study, Problem solving										
Т	EACHING L	EARNING STR	ATEGY								
Т	eaching and L	earning Activities	3	Engagement (hours)							
Fa	ace-to-Face Le	42									
S	elf-Directed Le	75									
F	ormal Assessm	nent		5.5							
Т	otal			122.5							
C	OURSE SCH	EDULE									
	Week		Торіс	СТ							
	Class 1-9	Integral for their appli	orm of conservation equations and icatins	CT 01							
	Class 10-1	5 Navier St different f	okes equation and its application in flow problems								
	Class 16-2	25 Plumbing	system in tall buildings	CT 02							
	Class 26-2	29 Piping sys	stem design and economics								
	Class 30-3	MT									
	Class 35-3	CT 03									
	Class 37-4	CT 04									

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks		
1	Assignment	20			
2	Assignment	20			
	Exam				
1	Final Exam, CT	80			
2	Final Exam, CT, MID	80			
3	Final Exam, CT	80			
4	Final Exam, CT, Mid	80			

REFERENCE BOOKS

1. Foundation of Fluid Mechanics – S. W. Yuan

- 2. Fluid Mechanics for Engineering Schobeiri, Meinhard T
- 3. Handbook for Plumbing System
- 4. Handbook for Fountain desing

Spring/Fall Semester L-4, T- I or II

COURSE INFORMATION									
Course Code	: ME 425	Lecture Contact Hours	: 3.00						
Course Title	: Aerodynamics	Credit Hours	: 3.00						
PRE-REQUISITE									
None									
CURRICULUI	M STRUCTURE								
Outcome Base	d Education (OBE)								
SYNOPSIS/RATIONALE									
To introduce the students with the fundamental principles of incompressible and compressible fluid									

no introduce the students with the fundamental principles of incompressible and compressible fluid mechanics and aerodynamics and provide them with fundamental knowledge for understanding supersonic flight, stability and control of flight and aircraft performance from the aerodynamic point of view.

OBJECTIVE

1. Introduce with the parts of an aircraft that sustain and control flight.

2. Correlate the concepts of aerodynamics and associated fluid mechanics with aircraft design and operation.

3. Describe, using basic formulas, the scientific basis for balancing the four forces of action on an aircraft in flight

4. Derive and apply the aircraft flight mechanics equations to analyze the flight performance of aircraft in different situations

5. Calculate aerodynamic loads (such as lift, induced drag, total drag, load factor) acting on an aircraft

6. Explain in detail how improvements in aerodynamic design have led to improvements in aircraft performance

7. Evaluate the performance potential of an aircraft by recognizing the inherent aerodynamic potential of the design

No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Demonstrate knowledge on different components of an aircraft, fundamental aerodynamics and related fluid mechanics formulas	1	C2	3,4			Q, F
CO2	Explain the fundamental principles and equations of aerodynamics for analysing flight performance	2	C3, C4	3,4			Q, ASG, F
CO3	Formulate and apply appropriate aerodynamic models to predict the forces on and performance of realistic configurations	2	C3, C4	3,4			Q, F, CS

LEARNING OUTCOMES & GENERIC SKILLS

CO4	Assess the applicability of aerodynamic models to predict the forces on and performance of realistic configurations and estimate the errors resulting from their application	4,5	C5	6,8			Q, F
-----	--	-----	----	-----	--	--	------

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- 1. Fundamental concepts of aerodynamics
- 2. Governing equations in aerodynamics
- 3. Lift and Drag over airfoils
- 4. Airplane performance

b. Detail Contents:

Introduction to aerodynamics, Fundamental concepts of aerodynamics, Lift and Drag, Aerodynamics forces and moments, Pressure distribution over an airfoil, Lift curve, L/D Ratio, cl from cp distribution, Lift Prediction, Different types of aerodynamic drag, Airplane design consideration, Fundamental principles of aerodynamics, Navier-Stokes Equation, Bernoulli's Equation, Angular velocity and vorticity, Stream function, Velocity potential, Laplace equation, Circulation, Uniform flow, Source and sink in potential flows, Rankine oval, Doublet and flow over a stationery circular cylinder, Vortex sheet, Vortex system and flow over a rotating circular cylinder, Thin airfoil theory, Flow over finite wings, Airplane Performance: Drag polar, Equation of motion, Thrust required, Power required, Thrust available, Power available, Vmax at a given altitude, Rate of climb, Gliding flight, Accelerated rate of climb, Endurance and Range, Takeoff performance, Landing performance, Turning flight, V-n diagram

CO-PO MAPPING

No	Course Outcome	PROGRAM OUTCOMES (PO)											
110.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Demonstrate knowledge on different components of an aircraft, fundamental aerodynamics and related fluid mechanics formulas	3											
CO2	Explain the fundamental principles and equations of aerodynamics for analysing flight performance		3										
CO3	Formulate and apply appropriate aerodynamic models to predict the forces on and performance of realistic configurations		3										
CO4	Assess the applicability of aerodynamic models to predict the forces on and performance of realistic configurations and estimate the errors resulting from their application				2	2							

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING								
Mapping	Level of Matching	Justification						
CO1-PO1	3	Students will learn about fundamental formulas and their derivation to analyse the performance of aerofoils.						
CO2-PO2	3	Students will learn about analysing complex problems of aerodynamics.						
CO2-PO2	3	Students will learn to analyseaerodynamic and fluid system by using engineering fundamental derived from pure science						
CO3-PO2	3	Students will learn about engineering practices in the field of aerodynamics						
CO4-PO4	3	Students will be able to investigateaerodynamic systems prevailing in practice as well as with conflicting requirements						
CO4-PO5	2	Student will be able to select various system components						

	following handbooks and design requirements							
TEACHING LEARNING STRATEGY								
Teaching and Le	earning Activities			Engag	gement (hours)			
Face-to-Face Le	earning							
					42			
Self-Directed Le	earning				75			
Formal Assessm	nent				5.5			
Total					122.5			
TEACHING MI	ETHODOLOGY							
Class Lecture, P	op quiz, Case study	y, Problem solving						
COURSE SCH	EDULE							
Week		Торіс	СТ	r	Remarks			
Class 1-6	Introduction to ae concepts of aerod Aerodynamics for distribution over a	prodynamics, Fundamental ynamics, Lift and Drag, rces and moments, Pressure an airfoil,	CT ()1				
Class 7-12	Lift curve, L/D R Lift Prediction, D drag, Airplane de	atio, cl from cp distribution, ifferent types of aerodynamic sign consideration						
Class 13-18	Fundamental prin Navier-Stokes Eq Angular velocity Velocity potential	ciples of aerodynamics, uation, Bernoulli's Equation, and vorticity, Stream function, l,	CT ()2				
Class 19-24	Laplace equation, Source and sink in oval, Doublet and circular cylinder	, Circulation, Uniform flow, n potential flows, Rankine l flow over a stationery						
Class 25-30Vortex sheet, Vortex system and flow over a rotating circular cylinder, Thin airfoil theory, Flow over finite wingsM'								
Class 31-36	Airplane Perform motion, Thrust re- available, Power a	ance: Drag polar, Equation of quired, Power required, Thrust available	CT ()3				

	Vmax at a given altitude, Rate of climb, Gliding flight, Accelerated rate of climb, Endurance and	
Class 37-42	Range, Takeoff performance, Landing performance, Turning flight, V-n diagram	

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessmen	t	
1	Assignment	20	
2	Assignment	20	
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	80	
4	Final Exam, CT, Mid	80	

Spring/Fall Semester L-4, T- I or II

COURSE INFORMATION									
Course Code Course Title	ME 427 Applied Engineering Mathematics	Lecture Contact Hours Credit Hours	: 3.00 : 3.00						
PRE-REQUIS	PRE-REQUISITE								
None									
CURRICULU	M STRUCTURE								
Outcome Based Education (OBE)									
SYNOPSIS/RATIONALE									

To provide students with the skills, knowledge and attitudes required to perform fundamental mathematical procedures and processes for solution of engineering problems, particularly the use of calculus, vector analysis and infinite series. Also, to show the relevance of mathematics to engineering and applied science.

OBJECTIVE

LEADNING OUTCOMES & CENEDIC SKILLS

1. Understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline.

2. To simplify expressions and solve simple problems involving Exponential, Logarithmic, Trigonometric, Inverse Trigonometric, Hyperbolic and Inverse Hyperbolic Functions and apply the principles of Three-Dimensional Vector algebra to solve a variety of basic problems in Engineering and Applied Science.

3. Application of the principles of Analytical Geometry and vector analysis to determine the equations of and relationships between straight lines and planes in Three-Dimensional Space.

4. To show the relevance of mathematics to engineering and applied science and use various types of Series to approximate given functions and hence solve simple problems involving Linear and Quadratic approximations and evaluation of integrals.

No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods		
CO1	Understanding of the underpinning mathematical concepts applicable to the engineering discipline.	1,2	C1, C2, C3	1,2, 3			Q, ASG, F		
CO2	To simplify expressions and solve simple problems involving Exponential, Logarithmic, Trigonometric, Inverse Trigonometric, Hyperbolic and Inverse Hyperbolic Functions and apply the principles of Three- Dimensional Vector algebra to solve a variety of basic problems in Engineering and Applied Science.	1,2	C2, C3	1,2, 3			Q, ASG, F		
CO3	Applicationoftheprinciplesofvariousdifferentialmethodsand	2,3	C2, C3, C4	1,2, 3,4	1,2		Q, F, CS		

theories and to determine the equations and relationships which are applicable to engineering field.					
 To show the relevance of mathematics to engineering and applied science and use various types of Series to approximate given functions and hence solve simple problems involving Linear and Quadratic approximations and evaluation of integrals. 	1,2	C2, C3	1,2, 3	1,2	Q, F, CS

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- 1. Non-linear differential equations
- 2. Finite difference method
- 3. Finite element method
- 4. Chaos theory

b. Detail Contents:

Non-linear differential equations: asymptotic method, perturbation method, Rayleigh-Ritz method, collocation method; Finite difference method; Finite element method; Boundary element method; Calculus of variations; Chaos theory.

CO-PO MAPPING

No.	No Course Outcome		PROGRAM OUTCOMES (PO)										
		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Understanding of the underpinning mathematical concepts applicable to the engineering discipline.	3	2										

СО	To simplify expressions and solve simple problems involving Exponential, Logarithmic, Trigonometric, Inverse Trigonometric, Hyperbolic and Inverse Hyperbolic Functions and apply the principles of Three- Dimensional Vector algebra to solve a variety of basic problems in Engineering and Applied Science.	3	2						
со	Application of the principles of various differential methods and theories and to determine the equations and relationships which are applicable to engineering field.		3	2					
СО	To show the relevance of mathematics to engineering and applied science and use various types of Series to approximate given functions and hence solve simple problems involving Linear and Quadratic approximations and evaluation of integrals.	2	2						

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level of Matching	Justification
CO1-PO1	3	Students will be able to understand the mathematical relations with the practical problems of engineering.
CO1-PO2	2	This understanding will enable the students to apply the mathematical theories to solve engineering problems.
CO2-PO1	3	Understanding of nature of various functions will enhance pupil's engineering knowledge
CO2-PO2	2	Students will have an ability to solve a variety of basic problems in Engineering and Applied Science

СОЗ-РО2	3	Students will be able to identify, formulate and analyze complex engineering problems by applying principles of dry friction							
СОЗ-РОЗ	2	They will be competent enough to develop solutions regarding engineering problems.							
CO4-PO1	2	Students will have knowledge of variou calculus of variations.	Students will have knowledge of various theories and calculus of variations.						
CO4-PO2	2	Student will be apt in applying these theories to analyse practical engineering problems.							
TEACHING LEARNING STRATEGY									
Teaching and L	earning Activities	S	Engagement (hours)						
Face-to-Face Le	earning								
			42						
Self-Directed L	earning		75						
Formal Assessn	nent		5.5						
Total 122.5									
TEACHING METHODOLOGY									
Class Lecture, Pop quiz, Case study, Problem solving									

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
Class 1-15	Non-linear differential equations: asymptotic method, perturbation method, Rayleigh-Ritz method, collocation method	CT 01	
Class 16-21	Finite difference method	CT 02	
Class 22- 30	Finite element method	MT	
Class 31- 36	Boundary element method	CT 03	
Class 37-39	Calculus of variations		
Class 40-42	Chaos theory		

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
1	СТ	20	
3	СТ	30	
4	СТ	20	
	Exam		
1	MID, Final Exam	80	
2	Final Exam	100	
3	Final Exam	80	
4	MID, Final Exam	70	

REFERENCE BOOKS

1. Applied Engineering Mathematics – Erwin Kreyzig, Publisher – Wiley

2. Mathematical methods for physicists and Engineers – Royal Eugune Collins, Publisher – Dover Publications

3. Engineering Mathematics – K. A. Stroud, Denter J. Booth, Publisher – Industrial press

Spring/Fall Semester L-4, T-I or II

COURSE INF	ORMATION		
Course Code	: ME 429	Lecture Contact Hours	: 3.00
Course Title	: Gas Dynamics	Credit Hours	: 3.00
PRE-REQUIS	SITE		
None			
CURRICULU	M STRUCTURE		
Outcome Based	d Education (OBE)		
SYNOPSIS/R	ATIONALE		
This course is	designed to introduce students	to the fundamentals of c	compressible fluid flow, with
an emphasis	on a wide variety of stead	y, one-dimensional flov	w problems and a general
understanding	of the principles of multi-dimen	nsional flow.	

OBJECTIVE

1. To cover the basic concepts and results for the compressible flow of gases and introduction to the numerical method of characteristics.

2. To introduce the students to the numerical method of characteristics. of compressible flow of gases

LEAF	RNING OUTCOMES & GEN	NERIC SKILLS					
No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Develop the Behavior of equilibrium and frozen flows with real gas properties.	1	C3	1,4			Q, ASG, F
CO2	Analyze non-equilibrium (rate) processes and behavior for gas dynamic flows.	3	C4	2			Q, ASG, F
CO3	Formulate and solve problems in one - dimensional steady compressible flow including: isentropic nozzle flow, constant area flow with friction (Fanno flow) and constant area flow with heat transfer (Rayliegh flow).	2	C3, C4	1	1,2		Q, F, CS
CO4	Define the conditions for the change in pressure, density and temperature for flow through a normal shock and also determine the strength of oblique shock waves on wedge shaped bodies and concave corners.	3	C1	4	1,2		Q, F, CS
(CP- 0	Complex Problems, CA-Comp	lex Activities, KP	-Knowledge	Profile	e, T –	Test;	PR – Project;

Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

One-dimensional compressible flows including basic concepts; isentropic flow; normal and oblique shock waves; flows with heat transfer (Rayleigh line), friction (Fanno line), and mass addition; simple waves; small perturbation theory for linearized, steady flows; method of characteristics for two-dimensional, steady flow and one-dimensional, unsteady flow

b. Detail Contents:

Flow of compressible fluids; One-dimensional flows including basic concepts, isentropic flow, normal and oblique shock waves, Rayleigh line, Fanno line, and simple waves; Multidimensional flows including general concepts, small perturbation theory for linearized flows, and method of characteristics for nonlinear flows

No	Course Outcome			PR	ROG	βRA	M	OU	ГСО	ME	S (PC))	
110.			2	3	4	5	6	7	8	9	10	11	12
CO1	Develop the Behavior of equilibrium and frozen flows with real gas properties.												
CO2	Analyze non-equilibrium (rate) processes and behavior for gas dynamic flows.			3									
CO3	Clear understanding of general energy equation to calculate changes in fluid flow for circular and non- circular pipes for in-compressible fluids and demonstrate knowledge on different type of flows and determine sonic velocity in a fluid		2										

CO-PO MAPPING

CO4	Use the general energy equation to calculate changes in fluid flow for circular and non-circular pipes for in-compressible fluids			1										
-----	--	--	--	---	--	--	--	--	--	--	--	--	--	--

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATI	ON FOR CO-PC) MAPPING						
Mapping	Level of Matching	Justification						
CO1-PO1	3	Students will be able to know about behavior of equilibrium. Students will get clear theoretical knowledge about frozen flows with real gas properties						
СО2-РОЗ	3	Students will develop the ability to illustrate a relationship between non-equilibrium (rate) processes and behavior for gas dynamic flows						
СО3-РО2	2	Students get definition of Clear understanding of general energy equation to calculate changes in fluid flow for circular and non-circular pipes for in-compressible fluids and demonstrate knowledge on different type of flows and determine sonic velocity in a fluid						
CO4-PO3	1	Students will be able to determine the c change in pressure, density and temper through a normal shock and also detern oblique shock waves on wedge shaped b corners.	onditions for the ature for flow mine the strength of oodies and concave					
TEACHING L	EARNING STR	ATEGY						
Teaching and L	earning Activities	;	Engagement (hours)					
Face-to-Face Le	earning							
		42						
Self-Directed L	earning	75						
Formal Assessn	nent	5.5						
Total		122.5						

TEACHING METHODOLOGY

Class Lecture, Pop quiz, Case study, Problem solving

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
Class 1-12	One-dimensional compressible flows including basic concepts; isentropic flow	CT 01	
Class 13-21	normal and oblique shock waves	CT 02	
Class 22- 27	flows with heat transfer (Rayleigh line), friction (Fanno line)	МТ	
Class 28- 36	mass addition; simple waves; small perturbation theory for linearized	MT	
Class 37-39	steady flows; method of characteristics for two- dimensional	CT 03	
Class 40-42	steady flow and one-dimensional, unsteady flow		

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessme	ent	
1	СТ	20	
3	СТ	30	
4	СТ	30	
	Exam		
1	MID, Final Exam	80	
2	Final Exam	100	
3	MID, Final Exam	70	
4	Final Exam	70	

REFERENCE BOOKS

1. Gas Dynamics – Oswatitsch, Klaus.

2. Gas Dynamics – Zucrow, J. Maurice.

Spring/Fall Semester L-4, T-I or II

COUI	RSE INF	ORMATION								
Course	e Code	: ME 431		Lecture	Contact Hou	rs	: 3.00			
Cours	e Title	: Finite Element M	ethod	Credit H	Iours		: 3.00			
PRE-	REQUIS	SITE								
None										
CURI	RICULU	M STRUCTURE								
Outco	me Base	d Education (OBE)								
SYNC	SYNOPSIS/RATIONALE									
Introd Galer	Introduction - Illustration using spring systems and simple problems - Weighted residual methods Galerkin's method- Variational approach - Rayleigh-Ritz method.									
OBJE	OBJECTIVE									
1.	To learn	basic principles of fir	nite elem	ent analy	sis procedure					
2.	To lear	n the theory and c	character	istics of	finite eleme	ents th	nat re	presen	t engineering	
structu	ures.									
3.7	To learn	and apply finite el	ement s	olutions	to structural,	therr	nal, d	lynami	c problem to	
develo	op								the	
knowl	ledge and	skills needed to effect	ctively ev	valuate fi	nite element a	analyse	es pert	formed	by others	
4.	Learn to	model complex geon	netry pro	blems and	d solution tec	hnique	es.			
LEAF	RNING (DUTCOMES & GEN	NERIC S	SKILLS						
No	Co	urse Outcomes	Corresp	ponding	Bloom's	КЪ	СР	CA	Assessment	
110.		dise outcomes	F	90	Taxonomy	IXI		CII	Methods	
CO1	Demon differen problen by anal	strate knowledge on t engineering as and difficulties ytical methods.		1	C1, C3	2	1,2		Q, ASG, F	
CO2	Analyzi of heat problem by appl method	ng different types transfer, beam as and solving them ying finite element		2	C3,C5	1,2	1		Q, ASG, F	

CO3	Understanding of the underpinning Finite element concepts applicable to the engineering discipline	2	C2,C3	1,2	1,2	Q, F, CS
CO4	Connecting the theoretical problems and solving them by applying finite element analysis for an approximate real solution.	4	C4,C5	1,2	1,2	Q, F, CS, Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam

COURSE CONTENT

a. Main Contents:

- 1. One-dimensional finite element analysis
- **2.** Two-dimensional finite element analysis
- **3.** Applications to structural mechanics
- **4.** Numerical integration
- 5. Solution of finite element equations, Fluid flow problems Dynamic problems.

b. Detail Contents:

Weighted residual methods Galerkin's method- Variational approach - Rayleigh-Ritz method. Onedimensional finite element analysis; bar element, beam element, frame element - Heat transfer problems. Two-dimensional finite element analysis; types of elements, shape functions, natural coordinate systems. Applications to structural mechanics - Numerical integration - Solution of finite element equations.Fluid flow problems - Dynamic problems.

CO-PO MAPPING

No	Course Outcome	PROGRAM OUTCOMES (PO)											
110.	Course Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Demonstrate knowledge on different engineering problems and difficulties by analytical methods.	3											
CO2	Analyzing different types of heat transfer, beam problems and solving them by applying finite element method.		2										
CO3	Understanding of the underpinning Finite element concepts applicable to the engineering discipline		3										
CO4	Connecting the theoretical problems and solving them by applying finite element analysis for an approximate real solution.				2								

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATI	ON FOR CO-PC	MAPPING
Mapping	Level of Matching	Justification
CO1-PO1	3	Students will learn how to solve different engineering problems by applying Finite element method.
CO2-PO2	2	Students by analysing different mathematical equation and applying Finite element method will be able to solve complex Engineering problems
CO3-PO3	3	Students will be able to understand the Finite element problems relations with the practical problems of engineering.
CO4-PO4	2	Students will be able to connect Finite element theories with approximate real solution and thus apply this knowledge to investigate.

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
	42
Self-Directed Learning	75
Formal Assessment	5.5
Total	122.5

TEACHING METHODOLOGY

Class Lecture, Pop quiz, Case study, Problem solving

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
Class 1-9	Weighted residual methods Galerkin's method- Variational approach - Rayleigh-Ritz method	CT 01	
Class 10-15	One-dimensional finite element analysis; bar element, beam element, frame element		
Class 16- 25	Heat transfer problems	CT 02	
Class 26- 29	Two-dimensional finite element analysis; types of elements		
Class 30-34	Shape functions, natural coordinate systems	MT	
Class 35-36	Applications to structural mechanics - Numerical integration	CT 03	
Class 37-42	Solution of finite element equations.Fluid flow problems - Dynamic problems.	CT 04	
ASSESSMENT	STRATEGY		

COsAssessment Method(100%)RemarksClass Assessment11Assignment202Assignment20Exam1

	1	Final Exam, CT	80					
	2	Final Exam, CT, MID	80					
	3	Final Exam, CT	80					
	4	Final Exam, CT, Mid	80					
REFERENCE BOOKS								
1.Seshu, P., Textbook	of Fin	ite Element Analysis						
2. Segerlind, L.J., Ap	plied F	inite Element Analysis						

Spring/Fall Semester L-4, T- I or II

COURSE INF	ORMATION									
Course Code Course Title	ME 433 Fluid Power and Control	Lecture Contact Hours Credit Hours	: 3.00 : 3.00							
PRE-REQUIS	SITE									
None										
CURRICULU	M STRUCTURE									
Outcome Base	d Education (OBE)									
SYNOPSIS/R	ATIONALE									
To introduce the circuit and circuit	he students to different fluid powe uit components, structure, operatin	er driven machineries and g principle and design.	l components, their fluid							
OBJECTIVE										
1. To introduce	e the students with the history and c	levelopment of fluid pow	er and control.							
2. To educate t their constructi	he students regarding various types on and use.	s of fluid control system a	and their components and							
3. To introduce	e the students with various common	nly used fluid power circu	iit							
4. To make the	4. To make the students familiar with the design performance analysis of fluid power system.									

LEAR	RNING OUTCOMES & GEN	NERIC SKILLS					
No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Demonstrate knowledge on different hydraulic and pneumatic system and their components	1,7	C2	4,7			Q, ASG, F
CO2	Analyse performance/ efficiency of simple hydraulic system	1, 2	C3	3,4			Q, ASG, F
CO3	Clear understanding of different practical hydraulic and pneumatic system	2, 10	C2	3			Q, F, CS
CO4	Design theoretical hydraulic circuit for desired application	3,12	C5	5	1,2		Q, F, CS

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- 1. Basic of Fluid power and control
- 2. Fluid power circuit components
- 3. Design of fluid power circuit
- 4. Function of various common fluid power circuit

b. Detail Contents:

Fluid power and its classification, Difference, advantages and disadvantages of hydraulic and pneumatic system, Hydraulic and oil and their properties, Conductor and connector, Working

pressure and burst pressure, Hydraulic pump - construction and operation, Hydraulic motor - construction and operation, efficiency calculation and cost estimation, Hydraulic actuator and related mathematical problem, Pressure control valve- construction and operation, Flow control valve - construction and operation, Direction control valve - construction and operation, Hydraulic circuit diagram for shaper machine, drill machine, Injection Molding Machine, Design of simple hydraulic circuit for desired operation, Hydraulic system maintenance, Contamination.

Introduction to pneumatic systems, Air brake system, Power steering, Air production unit, Condensation valve, ABS solenoid valve, Pneumatic relay valve, Duplex control valve, Air distributor, Air dryer, Drum valve, Pneumatic connection design for a plant, Design of pneumatic system.

N	G 0.4	PROGRAM OUTCOMES (PO)											
NO.	Course Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Demonstrate knowledge on different hydraulic and pneumatic system and their components	3						1					
CO2	Analyse performance/ efficiency of simple hydraulic system	3	3										
CO3	Clear understanding of different practical hydraulic and pneumatic system		3								2		
CO4	Design theoretical hydraulic circuit for desired application			3									3

CO-PO MAPPING

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING									
Mapping	Level of Matching	Justification							
CO1-PO1	3	Students will gather knowledge derived fr engineering fundamentals as well as com- practice	om physics and non engineering						
CO1-PO7	1	Students will gain knowledge how fluid e employed to solve various high power pro has high social impact	nergy can be oblem in industry that						
CO2-PO1	3	Students will learn the common engineeri in the field	ng practice prevailing						
CO2-PO2	3	Students will learn to analyse the perform system	ance of a hydraulic						
СОЗ-РО2	3	Student will be able to demonstrate knowledge on various common hydraulic device and their hydraulic diagram							
CO3-PO10	2	Students will be able to read and communicate using hydraulic diagrams of various commonly used hydraulic device							
CO4-PO3	3	Students will be able to design hydraulic s specific necessity considering public heal	systems to meet th and safety						
CO4-PO12	3	Students will be tasked to go through liter manuals to design a device	ature and various						
TEACHING L	EARNING STR	ATEGY							
Teaching and L	earning Activities		Engagement (hours)						
Face-to-Face Le	earning								
	42								
Self-Directed L	earning		75						
Formal Assessm	5.5								
Total	122.5								
TEACHING M	IETHODOLOGY	Y							

COURSE SCHEDULE

Class Lecture, Pop quiz, Case study, Problem solving

Week	Торіс	СТ	Remarks
Class 1-6	History of fluid power, Fluid power and its classification, Difference, advantages and disadvantages of hydraulic and pneumatic system, Hydraulic and oil and their properties, Conductor and connector, Working pressure and burst pressure, Basic components fluid power system	CT 01	
Class 7-12	Hydraulic pump- construction and operation (gear pump, vane pump, piston pump, lobe pump etc.), Hydraulic motor- construction and operation, efficiency calculation and cost estimation, Hydraulic actuator (single acting, double acting, rotary, tandem cylinder) and related mathematical problem		
Class 13-18	Different pressure control valve- construction and operation	CT 02	
Class 19-24	Flow control valve and direction control valve		
Class 25-30	Hydraulic circuit analysis for different hydraulic machineries and simple hydraulic circuit design, Contamination and maintenance.	MT	
Class 31-36	Introduction to pneumatic systems, Air brake system, Power steering, Air production unit, Condensation valve	CT 03	
Class 37-42	ABS solenoid valve, Pneumatic relay valve, Duplex control valve, Air distributor, Air dryer, Drum valve, Pneumatic connection design for a plant	CT 04	

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessmen		
1	Assignment	20	
2	Assignment	20	
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	80	
4	Final Exam, CT, Mid	80	

REFERENCE BOOKS

1. Fluid Power Circuits and Controls: Fundamentals and Applications - John S Cundiff

2. Fluid Power: Hydraulics and Pneumatics, 2nd Edition - James R Daines

Spring/Fall Semester L-4, T-I or II

COURSE INFORMATION											
Course	e Code	: ME 435		Lecture C	ontact Hours	: 3	5.00				
Course	e Title	: Introduction to C	FD	Credit Ho	urs	: 3	6.00				
PRE-I	PRE-REQUISITE										
ME 321											
CURE	RICULU	M STRUCTURE									
Outco	me Based	l Education (OBE)									
SYNC	PSIS/R	ATIONALE									
The us	se of mod	lern computational flu	uid dyı	namics soft	ware in mech	anical	engin	eering	. Build, solve,		
and vi	sualize fl	uid-flow models to ga	ain a d	eeper under	rstanding of th	ne prir	nciples	s of flu	id mechanics.		
OBJE	CTIVE										
1.F	Provide t	he student with a sigr	nifican	t level of ex	xperience in t	he use	of m	odern	CFD software		
for	•								the		
ana	alysis of	complex fluid-flow s	ystems	- f 41 - 1 : -				•			
2.1	mprove	the student's understa	nding	of the basic	principles of	IIU1d	mecha lf_dir	anics ected	detailed study		
0.1	mpiove	the student's research		a	IOII SKIIIS USII		un-un	ecteu,			
flu	id-flow p	problem and to comm	unicat	e the results	s in written fo	rm			complex		
LEAR	RNING (OUTCOMES & GEN	NERIC	CSKILLS							
Na	<u> </u>		Corre	esponding	Bloom's	VD	CD	C A	Assessment		
INO.	Co	urse Outcomes		РО	Taxonomy	KP	CP	CA	Methods		
	Signific	ant level of									
CO1	experie	nce in the use of		2,3	C1, C2	1			Q, ASG, F		
	modern	CFD software for									
	the anal	ysis of complex									

	fluid-flow systems.					
CO2	Improve the understanding of the basic principles of fluid mechanics.	1,2	C1,C2	1,2		Q, ASG, F
CO3	Develop capabilty of solving some of the difficulties that one may encounter in CFD, such as geometry simplification, mesh problems, convergence problems, multiple solutions.	4,5	C4	4		Q, F, CS
CO4	Improve the research and communication skills using a self-directed, detailed study of a complex fluid- flow problem and to communicate the results in written form.	3,10	C3,C4	3		Q, F, CS, Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- **4.** Introduction to Computational Fluid Dynamics (CFD)
- **5.** Introduction to control volume method
- **6.** Numerical solution of diffusion type equations: Steady one-dimensional conduction, unsteady one dimensional conduction, two and three- dimensional situations
- 7. Numerical solution of convection-diffusion-type equations: Steady one-dimensional

convection-diffusion, discretization equation in two and three-dimensions

8. Discretization of continuity and momentum equations for fluid flow

b. Detail Contents:

Introduction: Computational Fluid Dynamics (CFD)- a research, modelling and design tool, historical perspective, commercial CFD packages, mathematical description of physical phenomena, a brief discussion of discretization methods-finite difference, finite element.

Introduction to control volume method, Numerical solution of diffusion type equations: Steady one-dimensional conduction, unsteady one dimensional conduction, two and three- dimensional situations. Numerical solution of convection-diffusion-type equations: Steady one-dimensional convection-diffusion, discretization equation in two and three-dimensions.

Numerical solution of fluid flow equations: Discretization of continuity and momentum equations for fluid flow, pressure-based algorithms- SIMPLE & SIMPLER

No	Course Outcome		PROGRAM OUTCOMES (PO)										
		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Significant level of experience in the use of modern CFD software for the analysis of complex fluid-flow systems.		3	2									
CO2	Improve the understanding of the basic principles of fluid mechanics.	3	3										
CO3	Develop capabilty of solving some of the difficulties that one may encounter in CFD, such as geometry simplification, mesh problems, convergence problems, multiple solutions.				3	3							
CO4	Improve the research and communication skills using a self- directed, detailed study of a complex fluid-flow problem and to communicate the results in written form.			3							3		

CO-PO MAPPING
(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

Mapping	Level of Matching	Justification				
CO1-PO2	3	The student will demonstrate the ability software tools to build flow geometries, mesh for an accurate solution, select a obtain a flow solution, and visualize the re	y to use modern CFD generate an adequate appropriate solvers to esulting flow field.			
CO1-PO3	2	The student will demonstrate the ability to determine various quantities of intere heat fluxes, pressure drops, losses, etc., u and analysis tools	to analyse a flow field st, such as flow rates, sing flow visualization			
CO2-PO1	3	The student will demonstrate an ability to fluid flow that is occurring in a particular use the appropriate model equations to inv	p recognize the type of physical system and to vestigate the flow.			
CO2-PO2	3	The student will demonstrate an ability to describe various flow features in terms of appropriate fluid mechanical principles and force balances.				
CO3-PO4	3	The students will be able to conduct inv problems encounter in CFD, such as ge mesh problems, convergence problems, m	vestigation of complex cometry simplification, nultiple solutions, etc.			
CO3-PO5	3	The student will able to select and apply to solve complex problems.	appropriate technique			
CO4-PO3	3	The student will demonstrate the ability t flow system into a simplified model p proper governing equations for the ph system, to solve for the flow, to inve behaviour, and to understand the results.	o simplify a real fluid- problem, to select the ysics involved in the estigate the fluid-flow			
CO4-PO103The student will demonstrate the ability to communicate the ability to communicate the ability in a written format.						
TEACHING L	EARNING STR	ATEGY				
Teaching and L	earning Activities		Engagement (hours)			
Face-to-Face Le	earning		42			

Self-Directed Learning	75
Formal Assessment	5.5
Total	122.5
TEACHING METHODOLOGY	
Class Lecture, Pop quiz, Case study, Problem solving	

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
Class 1-9	Introduction: Computational Fluid Dynamics (CFD)- a research, modelling and design tool, historical perspective.	CT 01	
Class 10-15	Introduction of commercial CFD packages, mathematical description of physical phenomena, a brief discussion of discretization methods-finite difference, finite element.		
Class 16-25	Introduction to control volume method.	CT 02	
Class 26- 29	Numerical solution of diffusion type equations: Steady one-dimensional conduction, unsteady one dimensional conduction, two and three- dimensional situations.		
Class 30-34	Numerical solution of convection-diffusion-type equations: Steady one-dimensional convection- diffusion, discretization equation in two and three-dimensions.	МТ	
Class 35-36	Numerical solution of fluid flow equations: Discretization of continuity and momentum equations for fluid flow.	CT 03	
Class 37-42	Pressure-based algorithms- SIMPLE & SIMPLER	CT 04	

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessmen	t	
1	Assignment	20	
2	Assignment	20	

			Exam			
		1	Final Exam, CT	80]
		2	Final Exam, CT, MID	80		
		3	Final Exam, CT	80		
		4	Final Exam, CT, Mid	80		
REFER	RENCE BOO	KS				
5)	Computation	nal Flu	id Dynamics, J.D. Anderson	1		
6)	Computation	nal Me	thods for Fluid Dynamics, J	.H. Ferzig	ger& M. Perio	c
7)	Computation	nal Tec	hniques for Fluid Dynamic	s 1, C.A.J	. Fletcher	
8)	Computation	nal tecł	nniques for Fluid Dynamics	2, C.A.J.	Fletcher, 2 nd	Edition.

Spring/Fall Semester L-4, T-I or II

COURSE INFORMATION

Course Code	: ME 437	Lecture Contact Hours	: 3.00
Course Title	: Design of Fluid Machines	Credit Hours	: 3.00

PRE-REQUISITE

ME-323

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course is designed to introduce students to the fundamentals of fluid flow and particle mechanics, fluid flow systems, equipment handling fluid-particle systems, empirical formulae, theory and some simple mathematical derivations.

OBJECTIVE

1. To analyze the fluid flow and particle mechanics with an emphasis on fundamental concepts and applications in process industries.

2. To design and analyze fluid flow systems and equipment handling fluid-particle systems.

3. To study the empirical formulae, theory and some simple mathematical derivations. Examples and applications will generally cover fluid machinery, pipe flow and fluid-particle systems.

LEAR	RNING OUTCOMES & GEN	NERIC SKILLS					
No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Discuss the characteristics of centrifugal pump and reciprocating pumps	1	C6	1,4			Q, ASG, F
CO2	Find forces and work done by a jet on fixed or moving plate and curved plates	2	C1				Q, ASG, F
CO3	Find the working of turbines and select the type of turbine for an application	3	C1	1	1,2		Q, F, CS
CO4	Find the analysis of air compressors and select the suitable one for a specific application	3	C1	4	1		Q, F, CS

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

Impact of jets, Hydraulic Turbines, Rotary motion of liquids, Rotodynamic pumps, Positive

displacement pumps, Compressors

b. Detail Contents:

Impact of jets: Introduction to hydrodynamic thrust of jet on a fixed and moving surface (flat and curve),– Series of vanes - work done and Efficiency Hydraulic Turbines : Impulse and Reaction Turbines – Degree of reaction – Pelton Wheel – Constructional features - Velocity triangles– Euler's equation – Speed ratio, jet ratio and work done , losses and efficiencies, design of Pelton wheel – Inward and outward flow reaction turbines- Francis Turbine – Constructional features –

Velocity triangles, work done and efficiencies.

Axial flow turbine (Kaplan) Constructional features – Velocity triangles- work done and efficiencies – Characteristic curves of turbines – theory of draft tubes – surge tanks – Cavitation in turbines – Governing of turbines – Specific speed of turbine , Type Number–Characteristic curves, scale Laws – Unit speed – Unit discharge and unit power.

Rotary motion of liquids – free, forced and spiral vortex flows Rotodynamic pumps- centrifugal pump impeller types,-velocity triangles-manometric head- work, efficiency and losses, H-Q

characteristic, typical flow system characteristics, operating point of a pump. Cavitation in centrifugal pumps- NPSH required and available Type number-Pumps in series and parallel operations. Performance characteristics- Specific speed-Shape numbers – Impeller shapes based on shape numbers.

Positive displacement pumps- reciprocating pump – Single acting and double acting- slip, negative slip and work required and efficiency indicator diagram- acceleration head - effect of acceleration and friction on indicator diagram – speed calculation- Air vessels and their purposes, saving in work done to air vessels multi cylinder pumps. Multistage pumps-selection of pumps-pumping devices-hydraulic ram, Accumulator, Intensifier, Jet pumps, gear pumps, vane pump and lobe pump.

Compressors: classification of compressors, reciprocating compressor-single stage compressor, equation for work with and without clearance volume, efficiencies, multistage compressor, intercooler, free air delivered (FAD)

Centrifugal compressor-working, velocity diagram, work done, power required, width of blades of impeller and diffuser, isentropic efficiency, slip factor and pressure coefficient, surging and chocking. Axial flow compressors:- working, velocity diagram, degree of reaction, performance. Roots blower, vane compressor, screw compressor

No	Course Outcome			PR	ROG	RA	M (OU"	ГСО	ME	S (PC))	
110		1	2	3	4	5	6	7	8	9	10	11	12
СО	Discuss the characteristics of centrifugal pump and reciprocating pumps	3											
CO	Calculate forces and work done by a jet on fixed or moving plate and curved plates		3										

CO-PO MAPPING

CO3	Know the working of turbines and select the type of turbine for an application		3					
CO4	Do the analysis of air compressors and select the suitable one for a specific application		2					

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level of Matching	Justification					
CO1-PO1	3	Students will be able to know about behave of centrifugal pump and reciprocating pump	vior of characteristics				
CO2-PO2	3	Students will calculate forces and work do moving plate and curved plates	one by a jet on fixed or				
СО3-РОЗ	3	Students get definition of Clear understand turbines and select the type of turbine for	ding of working of an application				
CO4-PO3	2	Students will be able to determine analysi and select the suitable one for a specific a	s of air compressors pplication				
TEACHING L	EARNING STR	ATEGY					
Teaching and Learning Activities Engagement (hot							
Face-to-Face Learning							
			42				

 Self-Directed Learning
 75

 Formal Assessment
 5.5

 Total
 122.5

 TEACHING METHODOLOGY
 122.5

Class Lecture, Pop quiz, Case study, Problem solving

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
	Impact of jets: Introduction to hydrodynamic thrust of jet on a fixed and moving surface (flat and curve),– Series of vanes - work done and	CT 01	
Class 1-12	Efficiency Hydraulic Turbines : Impulse and Reaction Turbines – Degree of reaction – Pelton Wheel – Constructional features - Velocity triangles– Euler's equation – Speed ratio, jet ratio and work done , losses and efficiencies, design of Pelton wheel – Inward and outward flow reaction turbines- Francis Turbine – Constructional features – Velocity triangles, work done and efficiencies.		
Class 13-21	Axial flow turbine (Kaplan) Constructional features – Velocity triangles- work done and efficiencies – Characteristic curves of turbines – theory of draft tubes – surge tanks – Cavitation in turbines – Governing of turbines – Specific speed of turbine , Type Number–	CT 02	
	Characteristic curves, scale Laws – Unit speed – Unit discharge and unit power		
Class 22- 27	Rotary motion of liquids – free, forced and spiral vortex flows Rotodynamic pumps- centrifugal pump impeller types,-velocity triangles-manometric head- work, efficiency and losses, H-Q characteristic, typical flow system characteristics, operating point of a pump. Cavitation in centrifugal pumps- NPSH required and availableType number-Pumps in series and parallel operations. Performance characteristics- Specific speed-Shape numbers – Impeller shapes based on shape numbers.	МТ	
Class 28- 36	Positive displacement pumps- reciprocating pump – Single acting and double acting- slip, negative slip and work required and efficiencyindicator diagram- acceleration head - effect of acceleration and friction on indicator diagram – speed calculation- Air vessels and their purposes, saving in work done to air	MT	

	vessels multi cylinder pumps. Multistage		
	pumps-selection of pumps-pumping devices-		
	hydraulic ram, Accumulator, Intensifier, Jet		
	pumps, gear pumps, vane pump and lobe pump.		
Class 37-39	Compressors: classification of compressors, reciprocating compressor-single stage compressor, equation for work with and without clearance volume, efficiencies, multistage compressor, intercooler, free air delivered (FAD)	CT 03	
	Centrifugal compressor working velocity		
Class 40-42	diagram, work done, power required, width of blades of impeller and diffuser, isentropic efficiency, slip factor and pressure coefficient, surging and chocking. Axial flow compressors:- working, velocity diagram, degree of reaction, performance. Roots blower, vane compressor, screw compressor		

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessme	ent	
1	СТ	20	
3	СТ	30	
4	СТ	30	
	Exam		
1	MID, Final Exam	80	
2	Final Exam	100	
3	MID, Final Exam	70	
4	Final Exam	70	

REFERENCE BOOKS

1. Cengel Y. A. and J. M. Cimbala, Fluid Mechanics, Tata McGraw Hill, 2013

2. Yahya S. M, Fans, Blower and Compressor, Tata McGraw Hill, 2005.

3. Shepherd D. G, Principles of Turbo Machinery, Macmillan, 1969.

4. Stepanoff A. J, Centrifugal and Axial Flow Pumps, John Wiley & Sons, 1991.

5. Rajput R. K, Fluid Mechanics and Hydraulic Machines, S. Chand & Co., 2006.

6. Subramanya, Fluid mechanics and hydraulic machines, 1e McGraw Hill Education

India,2010

Spring/Fall Semester L-4, T- I or II

COU	RSE INF	ORMATION					
Cours	e Code	: ME 439	Lecture Contact Hours	: 3.00			
Cours	e Title	: Bio Fluid Mechanics	Credit Hours	: 3.00			
PRE-	REQUIS	SITE					
ME-3	21						
CURI	RICULU	M STRUCTURE					
Outco	me Base	d Education (OBE)					
SYNC	OPSIS/R	ATIONALE					
Engin	eering ap	pproach to the analysis of ci	irculatory and respiratory s	ystems and to other problems			
in phy	ysiologyi	nvolving fluid dynamics; R	eview of relevant anatomy	and physiology emphasizing			
qualita	ative con	sideration;Presentations and	discussions; Simulation of	physiological phenomena			
OBJE	ECTIVE						
i.	Unders	tand physiologically relevan	t fluid and solid mechanic				
ii.	Apply f	luid mechanical analyses re	levant to biomedical engine	eering problems			
iii. Understand and analyze velocity measurement techniques relevant to blood flow (e.g., MRI,Ultrasound, Doppler)							

LEAF	LEARNING OUTCOMES & GENERIC SKILLS										
No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods				
CO1	Apply fundamental concepts of calculus, differential equation to solve problems related to Bio fluid mechanics	1,3	C1, C3	3			Q, ASG, F				
CO2	Demonstrate knowledge to solve problems related to physiological process.	2	C3	2,4			Q, ASG, F				
CO3	Clear understanding of different practical medical devices.	2,3	C5, C6	6,7	1,2		Q, F, CS				

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- i. Various approaches and solutions applied to a wide variety of fluid mechanics problems related to physiological process
- ii. Problems related to medical devices
- iii. Problems related to laboratory setup.
- iv. Computational Fluid Dynamics (CFD)
- v. MATLAB.

b. Detail Contents:

Difference between the various approaches and solutions applied to awide variety of fluid mechanics problems related to physiological processes, medical devices, and laboratory setups as used for testing and measuring. A significant objective is to reinforce the student's prior knowledge in calculus, differential equations, and engineering as it applies to fluid mechanics. Computational Fluid Dynamics (CFD) and MATLAB will be introduced to emphasize Computer Aided

Engineering (CAE).

CO-PO MAPPING

No Course Outcome		PROGRAM OUTCOMES (PO)											
INU.	b. Course Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Apply fundamental concepts of calculus, differential equation to solve problems related to Bio fluid mechanics	3		3									
CO2	Demonstrate knowledge to solve problems related to physiological process.		3										
CO3	Clear understanding of different practical medical devices.		2	2									

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level of Matching	Justification						
CO1-PO1	3	Students will have knowledge on calculus and differential equation necessary to solve problems related to bio fluid mechanics						
CO1-PO3	3	Ability to apply calculus and differential e complex problems related to bio fluid mee	Ability to apply calculus and differential equation to solve complex problems related to bio fluid mechanics					
CO2-PO2	3	Students will be able to differentiate between various approaches and solutions applied to a wide variety of fluid mechanics problems related to physiological process						
CO3-PO2	2	Students will be able to analyse the requir devices and can design a solution	ement of medical					
CO3-PO3	2	Student will practice various Medical devices design problems						
TEACHING L	EARNING STR	ATEGY						
Teaching and L	earning Activities		Engagement (hours)					

Face-to-Face Learning	
	42
Self-Directed Learning	75
Formal Assessment	5.5
Total	122.5
TEACHING METHODOLOGY	
Class Lecture, Pop quiz, Case study, Problem solving	

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
Class 1-9	Difference between the various approaches and solutions applied to a wide variety of fluid mechanics problems related to physiological processes	CT 01	
Class 10-17	Fluid mechanics problems related to Medical Devices.		
Class 18- 27	Problems related to laboratory setups as used for testing and measuring	CT 02, MT	
Class 28- 33	Calculus, differential equations, and engineering as it applies to fluid mechanics		
Class 34-38	Computational Fluid Dynamics (CFD)	CT 03	
Class 39-42	MATLAB to emphasize Computer Aided Engineering (CAE)	CT 04	

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessmen	nt	
1	Assignment	20	
2	Assignment	20	
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT, Mid	80	

REFERENCE BOOKS

- 1. Applied Biofluid Mechanics, Lee Waite and Jerry Fine
- 2. A Brief Introduction to Fluid Mechanics, Young, Munson, and Okiishi

Spring/Fall Semester L-4, T- I or II

COURSE INFORMATION									
Course Code	: ME 441	Lecture Contact Hours	: 3.00						
Course Title	: Theory of Structures	Credit Hours	: 3.00						
PRE-REQUIS	ITE								
None									
CURRICULU	M STRUCTURE								
Outcome Based	d Education (OBE)								
SYNOPSIS/RATIONALE									
To introduce the students to concept of global structural stability, theory of structural analysis, and methods instructural analysis									

OBJECTIVE

- 1. Translate a stated problem in theory of structures to an analytic form.
- 2. Apply appropriate solution techniques to the problem.
- 3. Calculate the correct answer to the given problem.
- 4. Interpret the meaning of the outcome.
- 5. Recognize limitations of the solution techniques and the outcomes.

LLAN	and our comes & Ger	VENIC SKILLS					
No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Gain knowledge of element stiffness matrices to solves different complex problems	3	C1	3,4, 5	1,2		Q, ASG, F
CO2	Understand the design and performance of 2-D rigid joint structures.	2	C2	3			Q, ASG, F
CO3	Understand and analyse the elastic stability of 2-D rigid joint structures.	6	C2	3			Q, F, CS
CO4	Demonstrate knowledge on different on the frequency of rigid structures and finite element method.	1	C4,C5	3,5	1,3		Q, F, CS

LEARNING OUTCOMES & GENERIC SKILLS

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

1. Preliminaries; Elements stiffness matrices

2. Pin-joint structures

- 3. Elastic plane elementstructures
- 4. Mixed element structures
- 5. Elastic stability of 2-D rigid-joint structures;
- 6. Finite element method

b. Detail Contents:

Preliminaries; Elements stiffness matrices; Pin-joint structures; 2-D rigid-joint structures; Elastic plane element structures; Mixed element structures; Elastic stability of 2-D rigid-joint structures; Frequency of rigid-joint structures; Finite element method

CO-PO MAPPING

No	Course Outcome			PR	ROG	ĥRA	MO	DU.	ГСО	ME	S (PC))	
110.	No. Course Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Gain knowledge of element stiffness matrices to solves different complex problems			3									
CO2	Understand the design and performance of 2-D rigid joint structures.		2										
CO3	Understand and analyse the elastic stability of 2-D rigid joint structures.						3						
CO4	Demonstrate knowledge on different on the frequency of rigid structures and finite element method.	3											

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING								
Mapping	Level of Matching	Justification						
CO1-PO3	3	Students will gain knowledge of element solve various high power problem	Students will gain knowledge of element stiffness matrices to solve various high power problem					
CO2-PO2	2	Students will be able to design 2-D rigid j	oint structures.					
CO3-PO6	3	Students will be able to analyse the stability of 2-D rigid joint structures.						
CO4-PO1	3	Students will gain knowledge on rigid structures and finite element method						
TEACHING L	EARNING STR	ATEGY						
Teaching and L	earning Activities		Engagement (hours)					
Face-to-Face Le	earning							
			42					
Self-Directed L	earning		75					
Formal Assessment 5.5								
Total 122.5								
TEACHING METHODOLOGY								
Class Lecture, Pop quiz, Case study, Problem solving								

COURSE SCHEDULE										
Week	Торіс	СТ	Remarks							
Class 1-6	Preliminaries; Elements stiffness matrices	CT 01								
Class 7-12	Pin-joint structures; 2-D rigid-joint structures									
Class 13-18	Elastic plane elementstructures	CT 02								
Class 19-24	Mixed element structures									
Class 25-30	Elastic stability of 2-D rigid-joint structures	MT								
Class 31-36	Frequency of rigid-jointstructures	CT 03								
Class 37-42	Finite element method	CT 04								

ASSESSMENT STRATEGY

COs	Assessment Method	Remarks	
	Class Assessmen	ıt	
1	Assignment	20	
2	Assignment	20	
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	80	
4	Final Exam, CT, Mid	80	

REFERENCE BOOKS

- 1. Theory & Design of Structure E. S. Andrews.
- 2. Structural Design By Computer E. W. Wright.
- 3. Structural Design with Plastic B. S. Benjamin.

Fall Semester L-4, T-2

COURSE INFORMATION

Course Code	ME 445	Lecture Contact Hours	: 3.00
Course Title	Noise and Vibration	Credit Hours	: 3.00

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The course is based on Sound waves; Sound sources; Sound transmission through walls and structures; Acoustics of large and small rooms; Mechanism of sound absorption; Design of silencers. It also focuses on Vibration isolation, machine foundation design; Vibration absorption; Random vibration; Beam and plate vibrations

OBJECTIVE

1. This course will emphasize the development of basic understanding in the field of sound

transmission, sound absorption, damping in machines and experimental modal analysis.

2. The primary objective of the course is to develop the basic understanding of the construction and

design of noise control device and their applications.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Students will develop understanding of sound interference, refraction, diffraction and scattering; the basic concepts of active noise and vibration control; the concepts and methods of passive noise and vibration control	1	C2	1			Q, ASG, F

CO2	Students will be able to describe, quantify, predict, measure and analyze noise and vibration signals, to describe the physiological and subjective responses of humans exposed to noise and vibration, quantify the exposure and assess the response.	2	C2, C4	2,4		Q, ASG, F
CO3	To Apply engineering and other methods for controlling exposure to noise and vibration	3	C3	6,7	2,4	Q, F, CS
CO4	Enables students to apply Noise and Vibration on human body and hand-arm vibration effect and the relevant related legislation	5	C3,C4	4,6	2	Q, F, CS, Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- i. Sound source
- ii. Sound transmission
- iii. Machine foundation Design
- iv. Vibration Absorption
- v. Lagrange equations
- vi. Vehicular noise and control
- vii. Analysis of transient response

b. Detail Contents:

Sound waves; Sound source (Sources of Noise) Sound transmission through walls and structures, Linear vibration theory: free and forced vibration of single- and multi- degree-of-freedom systems, Engine muffler designs, Vibration isolation, Machine foundation Design, Damping in machines; experimental modal analysis, Random vibration, Beam and plate vibrations, Vibration Absorption, Laplace, Noise control through barriers and enclosures and absorbent linings, Logarithmic decrement methods to find modal parameters, Balance of rotating machinery: sources of unbalance, rigid rotors, flexible rotors, critical speeds, balancing principles. Lagrange equations, Vehicular noise and control – Environmental noise control, Solutions involving the reduction of the symptoms of vibration, Analysis of transient response: solution techniques for transient forcing including shock loading, Application to mechanical systems, Case study - worked illustration of a problem and its solution

No	Course Outcome			PF	ROG	βRA	M	CUC	ГСО	ME	S (PC))	
110.			2	3	4	5	6	7	8	9	10	11	12
CO1	Students will develop understanding of sound interference, refraction, diffraction and scattering; the basic concepts of active noise and vibration control; the concepts and methods of passive noise and vibration control	3											
CO2	Students will be able to describe, quantify, predict, measure and analyze noise and vibration signals, to describe the physiological and subjective responses of humans exposed to noise and vibration, quantify the exposure and assess the		2										

CO-PO MAPPING

	respons	se.													
CO3	To App method noise an	bly engineering an ls for controlling e nd vibration	d other exposure to			3									
CO4	Enables Vibratio arm vib relevan	students to apply Noise and n on human body and hand- ration effect and the related legislation													
(Numer matchir	(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)									evel of					
JUSTI	FICATI	ON FOR CO-PO	MAPPING	r r											
Мар	ping	Level of Matching					Ju	stif	icat	ion					
CO1-	·PO1	3	Students will have knowledge on sound interference, refraction, diffraction and scattering; the basic concepts of active noise and vibration control												
CO2-	·PO2	2	Students by vibration si	y preo gnal:	dicti s wil	ng, r 1 be	neas able	suri e to	ng a solv	nd a ve co	analy omp	ysing lex j	g noi: probl	se and ems	
CO3-	-PO3	3	Students wi to noise and	ill le: 1 vib	arn a ratio	bout n	t the	e me	tho	ds f	or co	ontro	olling	expos	sure
CO4	-P05	3	Students wive vibration in	ill ga hun	in ki nan l	now] oody	ledg and	e al d oth	oout her i	the	app vant	licat fielo	tion c ds	of nois	e and
TEACH	HING LE	EARNING STRA	TEGY												
Teachin	ng and Lo	earning Activities										Eng	agem	ent (h	ours)
Face-to	-Face Le	earning													
			42												
Self-Di	rected Lo	earning												75	
Formal	Assessm	nent											-	5.5	
Total	Total												12	22.5	

TEACHING METHODOLOGY

Class Lecture, Pop quiz, Case study, Problem solving

COURSE SCHEDULE Topic CT Remarks Week Sound waves: Sound source (Sources of Noise) CT 01 Sound transmission through walls and structures, Linear vibration theory: free and Class 1-9 forced vibration of single- and multi- degree-offreedom systems Engine muffler designs, Vibration isolation, Machine foundation Design, Damping in Class 10-15 machines; vibration absorbers; experimental modal analysis CT 02 Vibration absorption, Random vibration, Beam Class 16-25 and plate vibrations. Laplace, Noise control through barriers and enclosures and absorbent linings, Logarithmic decrement methods to find modal parameters, Balance of rotating machinery: sources of Class 26-29 unbalance, rigid rotors, flexible rotors, critical speeds, balancing principles. Lagrange equations Vehicular noise and control – Environmental MT noise control, Solutions involving the reduction Class 30-34 of the symptoms of vibration CT 03 Analysis of transient response: solution techniques for transient forcing including shock Class 35-36 loading, Application to mechanical systems Case study - worked illustration of a problem and its solution Class 37-42

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessmen	nt	
1	Assignment	20	
2	Assignment	20	
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	80	
4	Final Exam. CT. Mid	80	

REFERENCE BOOKS

1. Fundamentals of Noise and Vibration – F. J. Fahy, J. G. Walker, Publisher – Spon Press; 1998.

2. Active control of Noise and Vibration - Colin Snyder Hansen - C. H. Hansen, Scott Snyder,

Publisher – Spon Press, 1st edition, 1996

Spring/Fall Semester L-4, T- I or II

COURSE INFORMATION									
Course Code Course Title	ME 447 RoboticsLecture Contact Hours3.00 1.50ME 447 Credit Hours1.50								
PRE-REQUISIT	Έ								
CSE 171 - C Pro	gramming Language								
ME 495 – Mecha	tronics								
CURRICULUM STRUCTURE									
Outcome Based E	ducation (OBE)								

SYNOPSIS/RATIONALE

This course provides an overview of robot mechanisms, dynamics, and intelligent controls. Topics include planar and spatial kinematics, and motion planning; mechanism design for manipulators and mobile robots; control design, actuators, and sensors; wireless networking, task modelling, human-machine interface, and embedded software; image processing and introduction to artificial intelligence.

OBJECTIVE

1. Learn to apply the position and motion analysis of robots.

2. Learn to apply dynamic analysis and plan trajectories.

3. To know about various systems and sensors associated with robots.

4. To understand and apply image processing and artificial intelligence techniques for robots.

LEARNING OUTCOMES & GENERIC SKILLS

				1	1		
No.	Course Outcome	Corresponding PO	Bloom's Taxonomy	СР	CA	KP	Asses smen t Meth ods
CO1	Understand the engineering knowledge related to the main terminologies and concepts of robotic systems.	1	C1			3	Т
CO2	Apply the concepts and mathematical modeling for analyzing the position, motion, dynamics, forces and trajectory planning associated with robots.	2,3,4	C3,C4,C6	1		2,3, 4	T,AS G,F
CO3	Knowledge and application of the various sensors and systems used in robots.	1,5	C1,C3			1,3	T,F
CO4	Learn various image processing techniques and artificial intelligence to understand advance robotic systems and apply them using computer programming.	1,4	C1,C3	3		2,3	ASG, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Kinematics of Robots: Position and orientation analysis, mechanisms, transformations, forward and inverse kinematics, coordinate systems, DH representation

Differential Motions and Velocities: Differential motion, translation, rotation, differential changes, robot jacobian

Motion control systems: Transfer functions, PPI, PPD, PID controllers

Actuators and drive systems: Pneumatic devices, motors, servomotors

Dynamic Analysis and Forces: Dynamic analysis, lagrangian mechanics, kinetic energy and

potential energy for multiple DoF robots

Sensors: Potentiometers, LVDT, velocity sensors, piezoelectric sensors

Trajectory planning: The world and robot, configuration space, metrics

Image Processing and Analysis with Vision Systems: Image processing techniques, image acquisition, sampling, histogram, thresholding, convolution, blurring, sharpening and edge detection filters, applications in robots

Path planning algorithms: start-goal methods, map-based approaches, cellular decompositions

Artificial Intelligence: Introduction to artificial intelligence, neural networks, backpropagation theory, applications in robots

Applications: Navigating large spaces, coverage

CO-PO MAPPING

						PF	200	GRA	M	OU	ГСО	MES	5 (PO))	
No.	C	Course Learning Ou	itcome	1	2	3	4	5	6	7	8	9	10	1 1	12
CO1	Under knowl termin roboti	stand the engineering edge related to the main ologies and concepts of c systems.													
CO2	Apply mathe analyz dynam planni	oply the concepts and athematical modelling for alyzing the position, motion, namics, forces and trajectory anning associated with robots.			3	3	3								
CO3	Know variou robots	ledge and application of the s sensors and systems used in .						3							
CO4	Learn various image processing techniques and artificial intelligence to understand advance robotic systems and apply them using computer programming.			3			3								
Justific	ation fo	or CO-PO mappin	g:					•	•						
Маррії	ng	Corresponding Level of matching					J	usti	fica	tior	15				
C01-	PO1	3	Students w to get famil	ill ha liar v	ave t vith	he b robc	asic otic	: and syst	d ba æms	ckg 3.	roun	ıd kn	owled	lge re	equire
CO2-	PO2	3	Students will be able to analyze a problem related to positions												

		movements and dynamics of robots.
CO2-PO3	3	Students will be able to design a solution to tackle the problems
		they have analyzed.
CO2-PO4	3	Students will be able to conduct investigations on complex
		problems and come up with possible solutions.
CO3-PO1	2	Students will have the basic knowledge about the theory and
		working principles of sensors and various robotic systems.
CO3-PO5	3	Students will know how to modern technologies and tools are
		used to develop sensors and various robotic systems.
CO4-PO1	3	Students will understand various image processing techniques
		and how an artificial intelligence system is used with a robot.
CO4-PO4	3	Students will be able implement image processing and artificial
		intelligence models to investigate complex problems.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	42
Self-Directed Learning	75
Formal Assessment	5.5
Total	122.5

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE SCHEDULE

Week-1	Introduction, reference systems, degree of freedoms, robot classifications						
Week-2	Position and orientation analysis, mechanisms, transformations						
Week-3	Forward and inverse kinematics, coordinate systems, DH representation						
Week-4	Motion control systems, transfer functions, PPI, PPD, PID controllers						
Week-5	Actuators and drive systems, pneumatic devices, motors, servomotors						
Week-6	Differential motion, translation, rotation, differential changes, robot jacobian						
Week-7	Sensors, potentiometers, LVDT, velocity sensors, piezoelectric sensors						
Week-8	Dynamic analysis, lagrangian mechanics, kinetic energy and potential energy for multiple DoF robots						
Week-9	Trajectory planning, the world and robot, configuration space, metrics						
Week-10	Image processing techniques, image acquisition, sampling, histogram, thresholding						
Week-11	Convolution, blurring, sharpening and edge detection filters, applications in robots						
Week-12	Path planning algorithms, start-goal methods, map-based approaches, cellular decompositions						
Week-13	Introduction to artificial intelligence, neural networks, backpropagation theory, applications in robots						
Week-14	Applications, navigating large spaces, coverage						

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessmen		
1	Assignment	20	
2	Assignment	20	
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	100	
4	Final Exam, MID	Exam, MID 100	

REFERENCE BOOKS

- 1. Introduction to Robotics: Analysis, Control, Applications, Saeed B. Niku
- 2. Modeling and Control of Robot Manipulators Sciavicco and Siciliano, McGraw-Hill
- 3. Introduction to Robotics: Mechanics and Control John J. Craig, Pearson Prentice Hall.
- 4. Robot Analysis Lung-Wen Tsai, Wiley & Sons Inc.

REFERENCE SITE

None

Spring/Fall Semester L-4, T- I or II

COURSE INFORMATION

Course Code	ME 449	Lecture Contact Hours	: 3.00
Course Title	Composite Materials	Credit Hours	: 3.00

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course focuses on fibre-reinforced composites, especially polymer matrix composites, and covers design, manufacture, testing and through-life performance of composite structures. The topics covered in the course are: design, advanced manufacturing processes, micromechanical modelling, mechanical properties, fracture and fatigue, durability, repair and non-destructive evaluation of composites. The course enables the student to obtain knowledge, skills and attitudes needed for the optimum design and manufacture of advanced composite components. It will also engender ethical thinking and discernment pertaining to the judicious and eco-friendly use of such composites.

OBJECTIVE

- a. To apply the concepts of solid mechanics to advanced manufacturing processes, micromechanical modelling, mechanical properties, fracture and fatigue, durability, repair and non-destructive evaluation of common fibre-reinforced composites.
- b. To gain understanding of fibre-reinforced polymer composites in terms of their design, manufacture, testing and through-life performance.
- c. To obtain knowledge in the current applications of advanced composites, especially glass and carbon fibre reinforced polymer matrix type.
- d. To develop ethical judgement in application of composites and demonstrate ethical behaviour.

No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Apply the concepts of solid mechanics and analyze the design, manufacture and characterization of fibre- reinforced composites.	1	C3	1,2	1		Q, ASG, F
CO2	Understand the design, manufacture, performance and service life of fibre- reinforced polymer matrix composites	2	C2	3,4	1,2		Q, ASG, F
CO3	Understand the modern application of advanced composites, especially glass and carbon fibre reinforced polymer matrix types.	6,7	C2	7	1,2		Q, F, CS
CO4	Demonstrate ethical consideration and judgement in the eco- friendly applications of composites and towards class norms.	8	C4,C5	7			Q, F, CS, Pr

LEARNING OUTCOMES & GENERIC SKILLS

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- 1. Introduction to composites,
- 2. Manufacturing processes,
- 3. Micromechanical analysis of a lamina,
- 4. Macromechanical analysis of a lamina,
- 5. Laminated composites,
- 6. Design of composite components

b. Detail Contents:

Introduction to composites (definition, types of reinforcements and matrices, types of composites, application of composites, effect on environment, recycling), Manufacturing processes, Micromechanical analysis of a lamina (volume and mass fraction, density, elastic moduli, Strength hygrothermal properties), Macromechanical analysis of a lamina (stiffness and compliance, stress-strain relation, hygrothermal stresses, failure theories of lamina), Laminated composites (stress-strain relation, stiffness and compliance, hygrothermal analysis, failure analysis), Design of composite components

CO-PO MAPPING

No.	Course Outcome	PROGRAM OUTCOMES (PO)											
110.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Apply the concepts of solid mechanics and analyze the design, manufacture and characterization of fibre-reinforced composites	2											

CO2	Understand the design, manufacture, performance and service life of fibre-reinforced polymer matrix composites	3						
CO3	Understand the modern application of advanced composites, especially glass and carbon fibre reinforced polymer matrix types.			2	3			
CO4	Demonstrate ethical consideration and judgement in the eco-friendly applications of composites and towards class norms					2		

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATI	JUSTIFICATION FOR CO-PO MAPPING								
Mapping	Level of Matching	Justification							
CO1-PO1	2	Analyzing the design, manufacture and characterization of fibre- reinforced composites will enable the students to gain knowledge about Reinforced composite							
CO2-PO2	3	Understanding the design, manufacture, performance of fibre reinforced composites will allow them to solve complex problems							
CO3-PO6	2	Students will learn about the application of advanced composite that which will help them in professional career.							
CO3-PO7	3	Students will know about the impact of advanced composites on the environment							
CO4-PO8	2	Students will know how to apply advanced composite for an eco-friendly environment							

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
	42
Self-Directed Learning	75
Formal Assessment	5.5
Total	122.5
TEACHING METHODOLOGY	

Class Lecture, Pop quiz, Case study, Problem solving

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
1	Composite (General definition and Discussion)		
2	Fiber Reinforced Composites, Types and Properties and Use (Fibrous Composite), Metal Matrix, Ceramic Matrix	CT-1	
3	Polymer Matrix, Discussion of Fiber, Interface and Matrix, Reinforcement.		
4	Fiber with Thermoplastic, Property, Uses, Example		
5	Fiber with Thermoset (Glass fiber, Carbon fiber, Aramid fiber) with polymer.	CT-2	
6	Ply Stiffness, Strength, Failure, Review for Mid-Term		
7	Laminate Layer, Stiffness strength, Failure Testing	Mid-term	
8	Composite section and Failure mode.		
9-10	Inter-Laminar Stress and Stress concentration		

	(Maximum 3×3 Matrix), Holes in laminates		
11	Advanced Mechanical Testing and Characterization (Prepegs, Fiber reinforced polymer matrix, Delamination Test)	CT-3	
12-13	Advanced Polymers and Application (HDPE, LCD, Conductive polymer, Organic LED, Thermoplastic Elastomers), Environmental Impacts and recycling		
14	Biomaterial, Bio-composite (Implants, Scaffolds), Nano-composites (Carbon Nano Technology, Graphene Reinforcements), Ethical considerations Review for Finals		

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks			
1	Assignment	20				
2	Assignment	20				
	Exam					
1	Final Exam, CT	80				
2	Final Exam, CT, MID	80				
3	Final Exam, CT	80				
4	Final Exam, CT, Mid	80				

REFERENCE BOOKS

- 1. An introduction to composite materials-Derek Hull, Cambridge University Press, 1995
- 2. Materials science and engineering, an introduction-William D. Callister Jr. & David G. Rethwisch, 9th Ed., Wiley publications, 2010
- 3. Mechanics of composite Materials Autar K. Kaw, Publisher CRC Press, 1997.
- 4. Mechanics of composite Materials–Robert M. Jones, Publisher–John Benjamins Publishing Co, 1975.
- 5. Introduction to Composite Materials Stephen W. Tsai, Publisher– CRCpress,1980

Spring/Fall Semester L-4, T- I or II

COURSE INFORMATION									
Course	Code	ME 451		Lecture (cture Contact Hours : 3.00				
Course	e Title	Aircraft & Aero-en	igine Structure	Credit H	ours			: 3.00	
PRE-	REQUIS	SITE							
None									
CURI	RICULU	M STRUCTURE							
Outco	me Base	d Education (OBE)							
SYNC)PSIS/R	ATIONALE							
To lea	To learn the various factors in analysing and designing the different components of the aircraft.								
OBJE	CTIVE								
1 a	1 To learn what an engineer should consider as a responsibility during the design phase of an aircraft.								
2 c	2 To be able to explain the contemporary requirements and trends for designing various components of an aircraft.								
3 e	3 To be able to evaluate the different types of loads acting on the aircraft and their possible effect in its structural integrity.							their possible	
4 d	4 To evaluate the advantages and disadvantages of basic contemporary configurations of different aircraft components.							figurations of	
5	To be	able to ensure the safe	ety of designed co	mponents bas	sed on	structi	ural in	tegrity.	
LEAF	RNING (DUTCOMES & GEN	NERIC SKILLS						
No		nurse Autcomes	Corresponding	Bloom's	KÞ	CP	C۵	Assessment	
110.		Jurse Outcomes	РО	Taxonomy	IXI	CI	Ch	Methods	
CO1	Gain kr enginee relation various aircraft	nowledge about an er's responsibility in to designing components of an	8	1,2,4	1,2, 3	1			

CO2	Understand the basic contemporary factors for designing various components of an aircraft.	7	1,2,3	3,5		
CO3	Evaluate various types of loads acting on the aircraft	2	1,2	2,3		
CO4	Gain knowledge about various contemporary configurations of different aircraft components.	7	2,3	3,4	1,2	

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

Introduction to Aircraft Structure, Aircraft Loads Buckling and Stability of Structures; Wing Design; Empennage Design; Fuselage Design; Landing Gear; Engine

b. Detail Contents:

Introduction to Aircraft Structural Design; Design for Manufacturing: Engineer's Responsibility, Producibility, Maintainability, Tooling, Other Considerations Aircraft Loads: Review of Aeroelasticity, Flight Maneuvers, Wing Design Loads, Empennage Loads, Fuselage Loads, Propulsion Loads, Landing Gear Loads, Miscellaneous Loads, and Example of an Airplane Load Calculation Buckling and Stability of Structures: Columns and Beam Columns, Crippling Stress, Buckling of Thin Sheets, Thin Skin-Stringer Panel – Compression, Skin-Stringer Panel – General, Integrally Stiffened Panel, Wing Design: Wing Box Structure, Wing Box Design, Wing Covers, Spars, Ribs and Bulkheads, Wing Root Joints, Variable Swept Wings, Wing Fuel Tank Design, Wing Leading and Trailing Edges, Wing Control Surfaces, Fixed Leading and Trailing Edges, Design Considerations Empennage Design: Horizontal Stabilizer, Vertical Stabilizer (Fin), Elevator and Rudder Fuselage Design: Introduction, Fuselage Configuration, Fuselage Detail Design, Forward Fuselage, Wing and Fuselage Intersection, Stabilizer and Aft Fuselage Intersection, Fuselage Opening Landing Gear: Introduction, Development and Arrangements, Stowage and Retraction, Selection of Shock Absorbers, Wheels and Brakes Engine Mounts: Propeller-Driven Engine Mounts, Inlet of Jet Engine (Fighter), Wing-Pod (Pylon) Mounts, Rear Fuselage Mount and Tail Mount, Fuselage Mount (for Fighters)

CO-PO MAPPING

No.	Course Outcome	PROGRAM OUTCOMES (PO)											
1.00		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Gain knowledge about an engineer's responsibility in relation to designing various components of an aircraft.								3				
CO2	Understand the basic contemporary factors for designing various components of an aircraft.							3					
CO3	Evaluate various types of loads acting on the aircraft		3										
CO4	Gain knowledge about various contemporary configurations of different aircraft components.							2					

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING							
Mapping	Level of Matching	Justification					
CO1-PO8	3	Students will know their responsibility in relation to designing various components of an aircraft					
CO2-PO7	3	Students will be adroit at basic contemporary factors for designing various components of an aircraft.					
CO3-PO2	3	Ability to evaluate various types of loads acting on the aircraft will be achieved					
CO4-PO7	2	Students will have knowledge about various contemporary configurations of different aircraft components.					

TEACHING LEARNING STRATEGY				
Teaching and Learning Activities	Engagement (hours)			
Face-to-Face Learning	42			
Self-Directed Learning	75			
Formal Assessment	5.5			
Total	122.5			
TEACHING METHODOLOGY				
Class Lecture, Pop quiz, Case study, Problem solving				

Week 1	Introduction to Aircraft Structural Design												
Class 1	Design for Manufacturing												
Class 2	Engineer's Responsibility,												
Class 3	Producibility, Maintainability, Tooling, Other Considerations												
Week 2	Aircraft Loads												
Class 4	Review of Aero-elasticity												
Class 5	Flight Maneuvers												
Class 6	Continue												
Week 3	Aircraft Loads (Continued)												
Class 7	Wing Design Loads, Empennage Loads												
Class 8	Continue												
Class 9	Fuselage Loads, Propulsion Loads												
Week 4	Aircraft Loads (Continued)												
Class 10	Landing Gear Loads, Miscellaneous Loads												
Class 11	Continue												
Class 12	Example of an Airplane Load Calculation												
Week 5	Buckling and Stability of Structures												
Class 13	Columns and Beam Columns	CT 2											
Class 14	Crippling Stress												
Class 15	Buckling of Thin Sheets												
Week 6	Buckling and Stability of Structures(Continued)												
Class 16	Thin Skin-Stringer Panel – Compression												
Cl 17	Continue												
Class 1	8 Continu	Continue											
----------	------------	-------------------------------------	---------------	-----------------	------	--	--	--	--	--	--	--	--
Week 7	Bucklir	ng and Stability of Structures(C	ontinued)										
Class 1	0 0	rin oon Donol Conorol											
Class 1	9 Skin-Su	ringer Panel – General											
Class 20	0 Integral	ly Stiffened Panel											
Class 2	1 Continu	ie			СТ 3								
Week 8		Wing Design											
Class 22	2 Wing B	ox Structure, Wing Box Design											
Class 2	3 Wing C	overs, Spars, Ribs and Bulkheads	3										
Class 24	4 Wing R	oot Joints, Variable Swept Wings	3										
Week 9		Wing Design(Cor	ntinued)										
Class 25	5 Wing Fi	uel Tank Design											
Class 26	5 Continu	le											
Class 27	7 Wing L	Ving Leading and Trailing Edges											
Week 10		Wing Design(Continued)											
Class 28	3 Wing C	Ving Control Surfaces											
Class 29	Fixed L	eading and Trailing Edges											
Class 30) Design	Design Considerations											
Week 11		Empennage Design											
Class 31	l Horizon	Horizontal Stabilizer											
Class 32	2 Vertical	Stabilizer (Fin)											
Class 33	3 Elevator	r and Rudder											
Week 12		Fuselage Design											
Class 34	4 Introduc	ction, Fuselage Configuration											
Class 35	5 Fuselag	eDetailDesign,ForwardFuselage,V	WingandFusel	ageIntersection	M I								
Class 36	5 Stabiliz	er and Aft Fuselage Intersection, I	Fuselage Oper	ning									
Week 13		Landing Gear											
Class 37	7 Introduc	ction. Development and Arrangen	nents										
Class 38	8 Stowage	e and Retraction, Selection of Sho	ock Absorbers										
Class 39	Wheels	and Brakes			—								
Week 14		Engine Mounts											
Class 40) Propelle	er-Driven Engine Mounts. Inlet of	Jet Engine (F	ighter)									
Class 41	l Wing-P	od (Pylon) Mounts, Rear Fuselag	e Mount and T	Tail Mount									
Class 42	2 Fuselage	Fuselage Mount (for Fighters)											
ASSESSMI	ENT STRA	TEGY											
	COs	Assessment Method	(100%)	Remarks									
		Class Assessment	(=•••••)										
	1	СТ	20										
	2	СТ	30										
	3	СТ	20										

	4	СТ	30	
		Exam		
	1	MID, Final Exam	80	
	2	MID, Final Exam	70	
	3	MID, Final Exam	80	
	4	Final Exam	70	
REFERENC	CE BOOK	S		

Design of Aircraft by Thomas C. Corke; PearsonEducation. 1.

- 2. Synthesis of Subsonic Airplane Design (Delft UP) – Torenbeek.
- Airframe Structural Design: Practical Design Information 3. and Dataon Aircraft Structures-Michael Chun-YungNiu

Spring/Fall Semester L-4, T- I or II

COURSE INI	FORMATION		
Course Code	ME 453	Lecture Contact Hours	: 3.00
Course Title	Applied Aerodynamics	Credit Hours	: 3.00
PRE-REQUIS	SITE		
ME-343 Mech	nanics of Solids		
CURRICULU	JM STRUCTURE		
Outcome Base	d Education (OBE)		
SYNOPSIS/R	ATIONALE		
This course understanding	introduces the students with stability and control, aircraft p	h the fundamental prin performance etc.	ciples of aerodynamics for
OBJECTIVE			
1. To underst and aerody	and the fundamental principle namics.	es of incompressible and	compressible fluid mechanics
2. To apply the	nese principles to real systems	such as pipe flows, auton	nobiles and aircraft.

- 3. To explain the sources of friction, induced, wave, and pressure drag.
- 4. To understand aspects of flight characteristics that relates to lift, drag, thrust and power.

5. To be able to perform calculations involving lift, drag in relation to various aspects of flight and aircraft performance.

LEAF	RNING OUTCOMES & GEI	NERIC SKILLS					
No.	Course Outcomes	Corresponding PO	Bloom's Taxono my	KP	СР	CA	Assessment Methods
CO1	Explain the methods of fluid flow analysis i.e. theoretical, experimental and computational	2	1,2	1			Q, ASG, F
CO2	Analyze the concept potential theory and its application to incompressible and inviscid flows	1,2	1,2,3,4	2,3			Q, ASG, F
CO3	Apply of theoretical techniques to analyze the simple viscous flows	5	1,2,4	4,6			Q, F, CS
CO4	Apply the numerical methods for solution of complex flow situations	5	1,2,3	2,3			Q, F, CS
CO5	Describe implications errors and stability analysis of numerical methods	4	1,2	1,2			Q, F, CS

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

Inviscid flows, Theory of 2D aerofoils, Viscous Flows

b. Detail Contents:

Inviscid flows: Models of fluid flow, continuity and momentum equations applied to inviscid flows, drag momentum theory, concept of stream lines, stream tubes, streak line, path lines. Angular velocity, strain and vorticity, potential theory applied to Inviscid flows, elementary flows, their combination and applications. Solution of flows past bodies using Panel methods. Theory of 2D aerofoils: Kutta-Joukowski theorem, Kutta condition, Kelvin circulation theorem. Classical thin aerofoil theory. Types of flow separation and inviscid flow characteristics over a 2D aerofoil. Inviscid & incompressible flow over finite wings, Prandtl's lifting line theory, lift distribution over finite wings, effect of aspect ratio; Different types of drags. Viscous Flows: Qualitative aspects of viscous flows, Navier-Stokes equations, modification N-S equation for different flows, Exact solutions of N-S equations. Skin friction and skin friction drag. Laminar flow past flat plate. Concept free shear flows viz. jet, wake and mixing streams. Flow past cylinder and spheres and their applications. Boundary layer separation and its effects. Flow control techniques. Methods to reduce different types of drag. Introduction to turbulence, concept of turbulence modelling, Prandtl mixing length theory.

No	Course Outcome	PROGRAM OUTCOMES (PO)											
110.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Explain the methods of fluid flow analysis i.e. theoretical, experimental and computational		2										
CO2	Analyze the concept potential theory and its application to incompressible and inviscid flows	2	3										
CO3	Apply of theoretical techniques to analyze the simple viscous flows					3							
CO4	Apply the numerical methods for solution of complex flow situations					3							

CO-PO MAPPING

CO5 Describ stability method	be implications er y analysis of num ls	rors and erical			2								
(Numerical met matching)	(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)												
JUSTIFICATI	ON FOR CO-PC) MAPPING	r										
MappingLevel of MatchingJustification													
CO1-PO2	2	Students wi	ill be ad nal met	roit a 10ds	t the of fl	eore uid	tical flow	, ex	peri alys:	men is.	ital ai	nd	
CO2-PO1	2	Students will gain concept about the theory of incompressible and inviscid flows										ble	
CO2-PO2	3	Ability for the application of incompressible and inviscid flows will be achieved										lows	
СОЗ-РО5	3	Students will be meticulous about the theoretical techniques to analyze the simple viscous flows									es to		
CO4-PO5	3	Adroit at th situations	e nume	rical	metł	nods	s for	solı	ution	ı of	comj	plex fl	ow
CO5-PO4	2	Students wi methods an	ill be ab d also ti	le to ney v	anal vill ł	yze nave	the an a	stab abili	ility ity fo	of i or ei	nume rror a	erical malysi	S
TEACHING L	EARNING STR	ATEGY											
Teaching and L	earning Activities									Eng	agem	nent (h	ours)
Face-to-Face Le	earning											42	
Self-Directed L	earning											75	
Formal Assessn	nent											5.5	
Total									12	22.5			
TEACHING M	IETHODOLOG	Y											
Class Lecture, Pop quiz, Case study, Problem solving													

COURSE SCHEDULE

Week 1	Introduction to Applied							
Class 1	Aerodynamics	-						
Class 1	Applied aerodynamics: aerodynamic concepts, classification flows	-						
	and							
	Variation Poview of vector relation gradient, divergence, our lline integrals	_						
Class 5	surface	CT 1						
Wook 2	Integrals and volume integrals Discussion on basic tonics of theoretical	_						
WCCK 2	Aerodynamics							
Class 4	Angular velocity, strain rate and vorticity of fluid flows							
Class 5	lass 5 Classification of rotational and irrotational flows, Fluid Stressed and strain rates							
Class 6	Circulation, stream function and velocity potential	_						
Week 3	Development of Potential theory							
Class 7	Flow analysis of Inviscid and incompressible flows, review of	-						
	Bernoulli's equation and its applications	CT 2						
Class 8	Pressure coefficient and its variation on typical airfoils							
Class 9	Elementary fluid flows. Derivation of equations of stream function velocity							
	potential and velocity for uniform flow.	_						
Week 4	Application of potential theory for flow analysis							
Class 10	Derivation of equations of stream function and velocity potential and							
	velocity for doublet flow and vortex flow.							
Class 11	Analysis of flow past non-lifting cylinder							
Class 12	Analysis of flow past lifting cylinder, Derivation of Kutta-Joukowski							
	theory of lift							
Week 5	Classical thin airfoil theory							
Class 13	Discussion on airfoil nomenclature and their characteristics.	-						
Class 14	Kutta condition and Kelvin's circulation theorem and starting vortex.							
Class 15	Introduction to Classical thin airfoil theory.							
Week 6	Flow separation							
Class 16	Types of flow separation.	CT-3						
Class 17	Inviscid flow characteristics over a 2D airfoil.							
Class 18	Inviscid & incompressible flow over finite wings.]						
Week 7	Lift distribution]						
Class 19	Lift distribution over finite wings.							
Class 20	Effect of aspect ratio.]						
Class 21	Different types of drags.							

Week 8	Finite wing and its Lift								
Class 22	Finite wing theory or Prandtl classical lifting line theory.								
Class 23	Elliptical lift distribution.								
Class 24	Effect of aspect ratio and physical significance.								
Week 9	Derivation of N-S equation and its application to simple flows								
Class 25	Derivation of Navier Stokes equations: Continuity and Momentum equation.								
Class 26	Derivation of Navier Stokes equations: Energy equations and different forms of N-S equation. Modification of N-S Equations for different types of flow	МТ							
Class 27	Solution method of N-S equation for simple problems: Parallel flows.	IMI I							
Week 10	Boundary layer theory								
Class 28	Class 28 Introduction to Boundary layers. Properties of B-L properties.								
Class 29	Class 29 Derivation of Boundary layer equations								
Class 30	Class 20 Derivation of Doundary layer equations Class 30 Application of Boundary layer equations for laminar boundary layers and interpretation of Laminar B- L properties								
Week 11	Boundary layer theory								
Class 31	Modification N-S equation for different flows, Exact solutions of N-S Equations								
Class 32	Aerodynamic heating								
Class 33	Prandtl Boundary Layer theory								
Week 12	Laminar flow								
Class 34	Skin friction and skin friction drag.								
Class 35	Laminar flow past flat plate								
Class 36	Concept free shear flows viz. jet								
Week 13	Flow past cylinder and spheres								
Class 37	Flow past cylinder and spheres and their applications.								
Class 38	Boundary layer separation and its effects.								
Class 39	Flow control techniques.								
Week 14	Introduction to turbulence								
Class 40	Introduction to turbulence								
Class 41	Concept of turbulence modeling								
Class 42	Prandtl mixing length theory								

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessme	ent	
1	СТ	20	
2	СТ	30	
3	СТ	20	
4	СТ	30	
5	СТ	0	
	Exam		
1	MID, Final Exam	80	
2	MID, Final Exam	70	
3	MID, Final Exam	80	
4	Final Exam	70	
5	MID, Final Exam	100	

REFERENCE BOOKS

- 1. Mechanics of Fluids Irving H.Shames
- 2. Mechanics of Fluids B. S.Messy
- 3. Fundamentals of Aerodynamics John D Anderson;McGrawhill.
- 4. Aerodynamics for Engineering Students EHoughton,P.W. Carpenter, S.H. Collicot and D.T. Valentine;Elsevier.
- 5. Computational Fluid Mechanics and Heat Transfer Anderson

Fall Semester L-4, T-I/II

COURSE INFORMATION												
Course Code	ME 455	Lecture Contact Hours	3.00									
Course Title	Fire Safety and Engineering	Credit Hours	3.00									
PRE-REQUISITE												
None												
CURRICULU	M STRUCTURE											
Outcome Based	l Education (OBE)											

SYNOPSIS/RATIONALE

Theoretical course based on advanced systems and equipment's used for firefighting in different areas.

OBJECTIVE

The students will learn fire safety equipment design in tall buildings.

LEARN	ING OUTCOMES & GENERIC	SKILLS					
No.	Course Outcome	Correspondi ng PO	Bloom's Taxonomy	KP	СР	CA	Asse ssme nt Meth ods
CO1	Demonstrate knowledge about the dynamics of combustion and propagation of fire.	1	C2, C3	3	1		ASG , T, F
CO2	Demonstrate knowledge about different existing firefighting technique.	1	C3	4	1		ASG , T, F
CO3	Design fire hydrant system following national standards.	3,5	C2, C3	5,6	1		ASG , T, F
CO4	Design and analyze firefighting system of tall buildings and industrial areas.	3,5	C3, C4	5,6	1		ASG , T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Theory of combustion, active and passive firefighting systems, chemical firefighting, ventilation system for firefighting, firefighting equipment and safety gears, respiratory system in firefighting, automatic fire fighting system, fire hydrant system design, firefighting system design of tall buildings and industrial areas, Fire safety standards, Fire detection methods, Inspection procedure for fire protection in buildings, Human management during fire hazard/ fire drill., BNBC Code, Fire Safety layout in industrial area, specials vechicles

CO-PO MAPPING

									_	_						
						PF	206	RA	М	OU	ГСО	MES	5 (PO)			
No.		Course Learning C	Dutcome	1	2	3	4	5	6	7	8	9	10	1	12	
CO1	Dem dyna prop	onstrate knowledg mics of combustio agation of fire.	e about the n and	3										1		
CO2	Demonstrate knowledge about different existing firefighting technique.															
CO3	Desi follo	Design fire hydrant system following national standards.				3		3								
CO4	Design and analyze firefighting system of tall buildings and industrial areas.					3		3								
Justification for CO-PO mapping:																
Mapping Corresponding Level of matching						e	Just	ific	atio	ons						
CO1-PO1 3 Apply about			Apply knowl about the dyn	edge nami	e of i cs o	natu f coi	ral s nbu	ciei stio	nce, n ai	eng nd p	ginee propa	ering agatio	funda on of f	ment ire.	tals	
CO2-F	PO1	3	Students will firefighting to	students will acquire knowledge about different existing irefighting technique.												
CO3-I	PO3	3	Students will national stan	ents will able to design fire hydrant system following onal standards.												
CO3-I	PO5	3	Students will hydrant syste	app m fo	oly aj ollov	opro ving	pria nat	te te iona	echr al st	niqu and	ies ai ards.	nd se	lect fi	re		
CO4-I	PO3	3	Students will tall buildings	abl and	e tod ind	lesig ustri	n ar al ai	nd a reas	naly	ze	firefi	ighti	ng sys	tem	of	
CO4-I	PO5	3	Students will tall buildings	vill be able to predict and model firefighting system of ngs and industrial areas.										m of		
TEACH	HING	LEARNING STE	SATEGY									Enga	gemer	nt (ho	ure)	
Face-to	-Face	Learning Activitie	6									unga	<u>5</u> emer 47		<i>Juis)</i>	
Self-Di	rected	Learning											75	, ,		
Formal	Asses	sment									55					
Total													122	.5		
											I					
TEACH	HING	METHODOLOG	Ϋ́Υ													
Class L	ecture	. Pop quiz. Case st	udv. Problem	solvi	ng											

COURSE SCHEDULE								
Week			Торіс		СТ	Remar	ks	
Class 1-9	The fire	ory of of fighting	combustion, active and pas g systems.	ssive	CT 01			
Class 10-15	Che fire	emical f fighting	irefighting, ventilation sys g.	tem for				
Class 16- 25	Fire resp	fightin piratory	g equipment and safety ge system in fire fighting.	ars,	CT 02			
Class 26- 29	Aut syst	omatic em des	fire fighting system, fire h ign.	ydrant				
Class 30-34	Fire indu	fightin ustrial a	g system design of tall bui rreas.	MT				
Class 35-36	Fire Insp buil	e safety bection dings.	standards, Fire detection r procedure for fire protection	CT 03				
Class 37-42	Hur dril	nan ma l.	nagement during fire haza	rd/ fire	CT 04			
ASSESSMEN	T STR	RATEG	Y					
		COs	Assessment Method	(100%)	Remarks			
			Class Assessmen	nt				
		1	Assignment	20				
		2	Assignment	20				
			Exam	1				
		1	Final Exam, CT	80				
		2	Final Exam, CT, MID	80				
		3	Final Exam, CT	100				
		4	Final Exam, CT, Mid	100				

REFERENCE BOOKS

- 1. Fire Dynamics Gregory E. Gorbett, James L. Pharr, and Scott Rockwell
- 2. Fire Suppression and Detection Systems John L. Bryan
- 3. Fire Protection Systems A. Maurice Jones
- 4. Engineering Guide: Fire Safety for Very Tall Buildings Valerie Necka

Spring/Fall Semester L-4, T-I or T-II

COURSE INFORMATION

Course Code	: ME 459	Lecture Contact Hours	: 3.00
Course Title	: Preventive Maintenance	Credit Hours	: 3.00

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

Preventive maintenance is the care and protection of your vehicle against potential major auto repairs. Negligence is the most common and costly way to see money wasted on repairs that could have easily been prevented through regular service intervals. Depending on your vehicle's manufacturer, avoiding preventive maintenance on certain parts and components has the potential to void warranty coverage .This is a optional course for undergraduates majoring in vehicle engineering and for students majoring in mechanical engineering as a selected course to train students to become entry level maintenance engineer. The course is focused on maintenance procedures and diesel-powered vehicle systems inspection and operations.

OBJECTIVE

1. To familiarize students with the application of preventive maintenance theory to practical engineering field.

2. To make students aquatinted with various types of maintenance procedures.

3. To familiarize students with the different preventive measures.

4. Ability to relate regular maintenance to industrial maintenance.

LEARNING OUTCOMES & GENERIC SKILLS Corresponding Bloom's Assessment KP CP CA No. **Course Outcomes** Taxonomy Methods PO Apply preventive maintenance theory to C1. C2. 1.4. Q, ASG, F CO1 1,2 practical evaluation and C3 6 measurement

CO2	Articulate various types of maintenance procedures	1,3	C2, C3	1,4		Q, ASG, F
CO3	Identify and utilize important prevention techniques used in industry to evaluate maintenance parameters.	1,2	C2, C3, C4	1,3	1,2	Q, F, CS
CO4	Relate regular automotive maintenance to industrial maintenance of automobiles.	1,2	C3, C4	4,6	1,2	Q, F, CS

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- 1. Review Regular Maintenance
- 2. Automotive maintenance.

3. Vehicle Handling

- 4. Case Study
- 5. Vehicle maintenance depending on engines.
- 6. Preventive maintenance Characteristics

b. Detail Contents:

This course introduces students to various types of principles and practices used within industry for predictive and preventative maintenance of equipment. Topics will include: safety, housekeeping, filter replacement, oil analysis, lubricating, vibration analysis, shaft alignment, balancing, motor current analysis, infrared and ultrasonic analysis, and troubleshooting. Locating vehicle information – decoding vehicle identification number – identifying power-train configurations – identifying chassis configurations - using a shop manual – using an owners manual – using a repair

manual – using computerized service information – using a parts manual – using a labor guide – recording service procedures – checking and changing engine oil and filter – checking and adjusting power train fluids – checking and changing transmission/ transaxle fluids and filters – checking and adjusting differential fluids – checking and adjusting coolant levels – checking and adjusting brake fluid – checking and adjusting power steering fluid – checking and adjusting windshield washer fluid –inspecting and adjusting engine drive belts – servicing air conditioning systems, inspecting vehicle safety features – checking exterior lighting – checking and replacing windshield wiper blades – checking and adjusting tire pressures – checking tire wear patterns- new car pre delivery inspection- lubrication service of wear points- cleaning and care of vehicle

CO-PO MAPPING

No	Course Outcome	PROGRAM OUTCOMES (PO)											
		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Apply preventive maintenance theory to practical evaluation and measurement	3	2										
CO2	Articulate various types of maintenance procedures	3		2									
CO3	Identify and utilize important prevention techniques used in industry to evaluate maintenance parameters.	2	2										
CO4	Relate regular automotive maintenance to industrial maintenance of automobiles.	2	1										

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level of Matching	Justification
CO1-PO1	3	Students will be able to know about preventive maintenance theory
CO1-PO2	2	Students will develop the ability to apply maintenance theory to practical evaluation and measurement.
CO2-PO1	3	Students will have the knowledge of various vehicle maintenance procedures

СО2-РО3	2	2 Students will be able to find solution by categorizing the problems into various classifications.					
CO3-PO1	2	2 The students will attain the knowledge of various preventive maintenance of engines.					
СОЗ-РО2	2	Students will have an ability to techniques used in industry to evaluate maintenance parameters					
CO4-PO1	2	Students will learn about the automotive industrial maintenance.					
CO4-PO2	1	They will be able to apply the knowledge of small regular maintenance to industrial automotive maintenance.					
TEACHING L	EARNING STR	ATEGY					
Teaching and L	earning Activities		Engagement (hours)				
Face-to-Face Le	earning						
			42				
Self-Directed Lo	earning		75				
Formal Assessm	5.5						
Total 122.5							
TEACHING METHODOLOGY							
Class Lecture, Pop quiz, Case study, Problem solving							

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
Class 1-12	Demonstration of sound safety practices, mechatronic systems corresponding to the maintenance and repair plans, exchange wear and tear parts in context with preventative maintenance.	CT 01	
Class 13-21	Demonstration of how to take out devices and assembly parts, taking into account their function, mark parts regarding to their position and function,	CT 02	

	Elimination of disturbances caused by reworking and replacement of parts and assemblies Objectives		
Class 22- 30	Using TPM (Total productive maintenance principles), evaluation of the need for and performance of maintenance on mechanical system (including exchange of components)	МТ	
Class 31- 36	Demonstration of how to develop and implement a predictive maintenance plan	CT 03	
Class 37-42	Identification and explanation of various types and styles of predictive and preventive maintenance components, principles, and practices used in industrial applications.		

ASSESSMENT STRATEGY

COs	Assessment Method	Remarks	
	Class Assessme	ent	
1	СТ	20	
2	СТ	30	
3	СТ	30	
	Exam		
1	MID, Final Exam	80	
2	Final Exam	70	
3	MID, Final Exam	70	
4	Final Exam	100	

REFERENCE BOOKS

1. AMTEC. (2012). AMTEC basic preventive maintenance lessons. Versailles, KY: KCTCS.

2. Quality Training Portal. (2011). The 5s's: workplace organization. Waitsfield, VT: Resource Engineering,

3. AMTEC. (2012). AMTEC advanced technologies in predictive maintenance lessons. Versailles, KY: KCTCS.

4. Kemp, A. (2011). Industrial mechanics. (3rd ed.). Orland Park, IL: American Technical Publishers.

Spring/Fall Semester L-4, T- I or II

COU	COURSE INFORMATION								
Cours	eCode	ME 463		Co	ontact	Hours		3.00	
Cours	e Title	Petroleum Engineering	5	Cre	edit H	ours		3.00	
PRE-	REQUISI	TE							
None	None								
CUR	RICULUN	I STRUCTURE							
Outco	ome Based	Education (OBE)							
SYNC	SYNOPSIS/RATIONALE								
A deg	gree in Petr	roleum Engineering lead	s to exciting c	careers in the	oil a	nd gas	indus	try, including	
reserv	oir, produ	ction and drilling engine	ering, which o	offer the sco	be to	work a	cross	the world, in	
techni	ically chall	enging and financially re	warding jobs.						
ODI									
		high amployability rage	nd and the ac	uma ia magaa	minad	a 1	andin	a nua anama hu	
10 finitern	ational oil	companies	rd and the co	urse is recog	nized	as a I	eading	g program by	
mem	ational off	companies.							
LEAI	RNING O	UTCOMES & GENERI	IC SKILLS						
			Correspond	Bloom's			C	Assessment	
No.	C	Course Outcome		Taxonomy	KP	CP		Methods	
			ing PO	Tuxonomy					
	Provides	excellent instruction							
	and desig	n experiences essential							
CO1	for gradu	ates to enter the	1, 2	C1,C2	1			ASG, T, F	
	practice of	ng and pursua life long							
	profession	fing and pursue life-long							
	profession	nai development.							
	To condu	ct research that							
	generates	, communicates, and	2.6						
CO2	applies ne	ew knowledge for the	2, 0	C2,C3	1,3			ASG, T, F	
	bettermer	nt of society.							
	Degion	avatam component an							
	Design a	system, component, or							
	within reg	listic constraints such							
GOO	as econor	nic environmental	13	64					
CO3	social po	litical ethical health	1, 5	C4	2			ASG, T, F	
	and safety	v. manufacturability.							
and sustainability.									
	Use the te	ngineering tools							
CO4	necessary	for engineering	3.12	C5	7			ASG, T. F	
_	practice	ior engineering	,	_				2 7	
	Practice.								

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

An overview of hydrocarbon reserves in Bangladesh; Classification of rocks and hydrocarbon deposits and their genesis; Geophysical exploration of oil and gas; Physical properties and characteristics of reservoir rocks; Origin, accumulation, composition and behavior of hydrocarbon reserves; Analysis and prediction of reservoir performance.

Drilling rigs and their types; Rig moving equipment; Rig components and their auxiliaries; Drilling operations; Vertical and direction drilling; Well logging and interpretation; Cracking and steaming; Well completion and cementation.

CO-PO MAPPING

Na		Course Learning (PI	ROC	GRA	Μ	OU	TCC	ME	S (PO)	
INO.		Course Learning C	Jutcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Prov desig grad petro life-l	vides excellent instruction and gn experiences essential for luates to enter the practice of oleum engineering and pursue long professional development.			3										
CO2	To c com know socie	To conduct research that generates, communicates, and applies new knowledge for the betterment of society.			3				3						
CO3	Design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.			3		3									
CO4	CO4 Use the techniques, skills, and modern engineering tools necessary for engineering practice.		lls, and bls necessary e.			3									3
Justific	ation	for CO-PO mapp	ing:												
Mappir	ıg	Corresponding Level of matching	g Justifications												
CO1-PO1 2 The studenginee			The student engineering	The student will learn about design essentials of petroleum engineering											
CO1-PO2 3		Students will related to per	l be a	able um e	to ai	naly	ze c ing.	com	pley	k eng	ginee	ring p	roblei	ns	

CO2-PO2	3	Students will be able to generate solutions by conducting research and applying new knowledge for the betterment of society.
CO2-PO6	3	They will be able to apply contextual knowledge to assess socialhealth and safety issue.
CO3-PO1	3	Students will have knowledge about Drilling rigs, their types and drilling operation.
СОЗ-РОЗ	3	Conduct investigations of complex problems on various identifying variables and measures to meet desired needs within realistic constraints
CO4-PO3	3	Design solution of appropriate techniques, skills necessary for engineering practice.
CO4-PO12	3	Choice and availability of different kind of skills, and modern engineering tools to engage in lifelong learning

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	42
Self-Directed Learning	75
Formal Assessment	5.5
Total	122.5
TEACHING METHODOLOGY	

Class Lecture, Pop quiz, Case study, Problem solving

COURSE SCHEDULE

Week-1	An overview of hydrocarbon reserves in Bangladesh;	
	Classification of rocks and hydrocarbon deposits and their genesis;	
Week-2	Geophysical exploration of oil and gas	
Week-3	Physical properties and characteristics of reservoir rocks	CT 1
Week-4	Origin, accumulation, composition and behavior of hydrocarbon	
	reserves	
Week-5	Analysis and prediction of reservoir performance.	
Week-6	Drilling rigs and their types	
Week-7	Rig moving equipment	Mid term
Week-8	Rig components and their auxiliaries	
Week-9	Drilling operations	
Week-10	Vertical and direction drilling	CT 2
Week-11	Well logging and interpretation	

Week-12	Cracking		CT 3						
Week-13	Well com	Well completion and cementation							
Week-14	Review	Review							
ASSESSMENT STRATEGY									
	COs	Assessment method	ırks						
		Class As	sessment						
	CO1		20						
	CO2	Class observation/ Assignments	20						
	CO3		20						
	CO4		20						
		Ex	am						
	CO1		80						
	CO2	CT/MID/Final Exam	80						
	CO3		80						
	CO4	-							
REFERENC	CE BOOKS	S	·						
1. Fund	amentals of	Petroleum Industry – Rob	bert O. Anderson						

- 2. Introduction to Petroleum, Geology and Drilling Md. AbdurRazzaqAkanda, Md. Quamrul Islam
- 3. Nontechnical Guide to Petroleum, Geology, Exploration, Drilling and Production Norman J. Hyne

REFERENCE SITE

None

Spring/Fall Semester L-4, T- I or II

COURSE INF	FORMATION		
CourseCode	ME 465	Lecture Contact Hours	: 3.00
Course Title A	Automobile Chassis Engineering	Credit Hours	: 3.00

PRE-REQUISITE

ME-367 Automobile Engineering

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To introduce the students to components of automotive chassis and their role and dynamics. Also introduce the recent technologies used in Automotive chassis for safety and efficient driving.

OBJECTIVE

1. Introduction to Automotive Chassis and its components.

2. Introduction to dynamics in each component, their linkage, involvement in total functioning of automobile.

3. Introduction to modern technologies used in Chassis, safety, efficiency driving.

4. Analyse the complete design exercise and arrive at important dimensions of chassis components.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	To address the underlying concepts and methods behind Automobile chassis and body engineering	1,12	C1, C2	1,3, 4			Q, F
CO2	Identify, formulate and solve engineering problems related to automobile drive line components	2,3	C2, C3, C4	3,4, 5			Q, ASG, F
CO3	Learn about the performances of various axles, suspensions and steering systems and to design the same.	3,4	C2, C3, C4	3,4	1		Q, ASG, F

CO4	Learn the importance of weight reduction and its consequence on vehicle performance.	3,7	C4, C5, C6, A3	4,5	1		Q, F, CS
-----	---	-----	-------------------	-----	---	--	----------

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam

COURSE CONTENT

a. Main Contents:

- 1. Introduction to Chassis components
- 2. Vehicle aerodynamics,
- 3. Design of chassis with engineering concepts
- 4. Forces and stress analysis inside chassis components
- 5. Dynamics of chassis components and linkages

b. Detail Contents:

Introduction of chassis components and their relative positioning: engine, gearbox, drivetrain, differentials, front axle & steering linkage, real axle, bearings in axle and steering.

Vehicle Aerodynamics: Vehicle drag and types, various types of forces and moments, effects of forces and moments, various body optimization techniques for minimum drag, principle of wind tunnel technology, flow visualization techniques, tests with scale models.

Car Body Details: Types of car bodies, visibility, regulations, driver's visibility, methods of improving visibility, safety design, constructional details of roof, under floor, bonnet, boot, wings etc., Classification of coach work.

Design of Vehicle Bodies: Vehicle body materials, use of composites, power to weight ratio, layout of the design, preliminary design, safety, Idealized structure- structural surface, symmetric and asymmetrical vertical loads in car, testing of body.

Force and stress: study of loads-moments and stresses on frame members, loads-moments and stresses at different sections of front axle, real axle, bearing loads, determination of optimum dimensions and proportions for steering linkages and associated forces, longitudinal loads on vehicle, symmetric and asymmetrical vertical loads in car.

CO-PO MAPPING

No	Course Outcome	PROGRAM OUTCOMES (PO)											
110.	Course Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	To address the underlying concepts and methods behind Automobile chassis and body engineering												3
CO2	Identify, formulate and solve engineering problems related to automobile drive line components		3	2									
CO3	Learn about the performances of various axles, suspensions and steering systems and to design the same.			3	2								
CO4	Learn the importance of weight reduction and its consequence on vehicle performance.		3					3					

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level of Matching	Justification
CO1-PO1	3	Understand the fundamental knowledge applied in automotive manufacturing and the purposes it serves.
CO1-PO12	3	Students willgo through the recent design of chassis from different manufacturers and will be able to identify the reasonings behind their design.
CO2-PO2	3	Learn some basic problems and design parameters associated with each component.
СО2-РОЗ	2	Analyse similar possible linkages which can serve the same purpose and learn the most suitable design
СОЗ-РОЗ	3	Analyse the forces and stresses involved in the drive-train components and how they are supported with the structure.
CO3-PO4	2	Students can investigate recent technologies involved from different manufacturers and their relative performance upgrades.

CO4-PO3	3	Learn the design related to aerodynamics body and minimization of load using composites				
CO4-PO7	3	Students will learn the importance of reduced usage of material for global mitigation of manufactured pollutants and recyclability of the chassis components.				
TEACHING LEARNING STRATEGY						
Teaching and L	Engagement (hours)					
Face-to-Face Le						
	42					
Self-Directed La	75					
Formal Assessm	5.5					
Total	122.5					
TEACHING M	IETHODOLOG	Y				
Class Lecture, Pop quiz, Case study, Laboratory visits						

COURSE SCHEDULE

Week		Торіс	СТ	Remarks	
Class 1-8	Introduction relative pos	n of chassis components a itioning	nd their	CT 01	
Class 9- 18	Vehicle Ae	rodynamics		CT 02	2
Class 19-26	Car Body Details			MT	
Class 27-34	Design of V	Design of Vehicle Bodies			}
Class 35-42	Force and s	ce and stress			
ASSESSMENT	STRATEG	Y			
	COs	Assessment Method	(100%)	Remarks	
		Class Assessmen	nt		
	2	Assignment	20		
	3	Assignment	20		
		Exam			

100

80

Final Exam, CT

Final Exam, CT, Mid

1

	3	Final Exam, CT, Mid	80				
	4	Final Exam, CT	100				
REFERENCE BOOKS							
1. Automotive Engine	1. Automotive Engineering Powertrain, Chassis System and Vehicle Body (1 st Edition) - David A.						
Crollo Elsoviar Dub	Carlle Election Dublications						
Ciolia – Eiseviei Fub	CIOHA – EISEVIEI FUDICATIONS						
2 Automobile Chassi	2 Automobile Chassis Design (2 nd Edition) B. Deen Auerra, Kataliansky Press						
2. Automobile Chassi	2. Automobile Chassis Design (2 – Euton) - R. Dean-Avenis - Rotenansky i less						
3 Automotive Mache	nice (1	0 th Edition) William Crow	se & Dong	old Anglin C	arear Education		
	unes (1	o Eunion) - william Ciou		alu Anglill - C			

Spring/Fall Semester L-4, T- I or II

COURSE INFORMATION

CourseCode	: ME 467	Lecture Contact Hours	: 3.00
Course Title	: Autotronics	Credit Hours	: 3.00
PRE-REOUIS	TE		

ME-367 Automobile Engineering

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

Impart knowledge on Basic Electrical supply and safety. Learn the working of ignition system and the electrical components in the automotive. Acquire knowledge about the electronics applications in the automobile vehicle.

OBJECTIVE

- To learn the basics of electrical and Laws.
- To study about the electrical safety and importance of the earthing.
- To study the construction and principle of DC motor and its types.
- To understand about the generator, alternator, regulator and starting motor and mechanism.

- To study about the different ignition system.
- To study about the lead acid battery and testing.
- To learn about the lighting system and its components in the automobile vehicle.
- To study the horn, wins screen wiper, lights and audio systems.
- To study the electronic devices in the automotive.
- To study about the sensors and electronic control unit.

LEAR	RNING OUTCOMES & GEI	NERIC SKILLS					
No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	To address the underlying concepts and methods Identify electronic components in automobiles.	1	C1, C2	1,3, 4			Q, F
CO2	Student will learn to Create a Logic circuit by logic gates and use Programmable logic control in automobiles.	1,2	C2, C3	3,4, 5	1		Q, ASG, F
CO3	Student will able to Select right type of transducer, sensor and actuator.	3,4	C2, C3	3,4			Q, ASG, F
CO4	Student will learn to Select microprocessor for application in automobiles	1,2	C4, C5	4,5	1		Q, F, CS

 $(CP-\ Complex\ Problems,\ CA-\ Complex\ Activities,\ KP-\ Knowledge\ Profile,\ T-\ Test\ ;\ PR-\ Project\ ;\ Q-\ Quiz;\ ASG-\ Assignment;\ Pr-\ Presentation;\ R-\ Report;\ CS-\ Case\ study,\ F-\ Final\ Exam)$

COURSE CONTENT

a. Main Contents:

- 1. FundamentalsofAutomotiveElectronics
- 2. Sensors & Actuators,
- 3. ElectronicFuelInjection&IgnitionSystem
- 4. AutomotiveElectrical
- 5. DigitalEngineControlSystem
- 6. The system approach to control &instrumentation
- 7. Comfort&Safety
- 8. Electromagnetic Interference Suppression

b. Detail Contents:

Fundamentals of Automotive Electronics: Microprocessor and micro-Computer applications in automobiles; components for engine management System; electronic management of chassis system; vehicle motion control; electronic panel meters.

Sensors & Actuators: Introduction; Basic sensor arrangement; Types of Sensors such as oxygen sensors, Crank angle position sensors, fuel metering/vehicle s peed sensors and detonation sensors, altitude sensors, flow Sensors, throttle position sensors, solenoids, stepper motors, relays.

Electronic Fuel Injection & Ignition System: Introduction; feedback carburettor system; throttle body injection and multi point fuel injection System; injection system controls; advantage of electronic ignition systems; types of solid-state system and their principle of operation; electronic spark timing.

Digital Engine Control System: Open loop and closed loop control system; engine cooling and warm-up control; acceleration, deceleration and idle speed control; integrated engine control system; exhaust emission control engineering; on-board diagnostics; future automotive electronic systems.

Automotive Electrical: Batteries; starter motor & drive mechanism; D.C. generator and alternator; regulation for charging; lighting design; dashboard instruments; horn, warning system and safety devices.

Comfort & Safety: Seats, mirrors and sun roofs; central locking and electronic Windows; cruise control; in-car multimedia; security; airbag and belt tensioners; other safety and comfort systems; new developments.

The system approach to control &instrumentation: Fundamentals, electronic

components and circuits, digital electronics, microcomputer instrumentation and control, sensors and actuators, digital engine control systems, vehicle motion control, automotive instrumentation and telematics, new developments.

Electromagnetic Interference Suppression: Electromagnetic compatibility Electronic dash board instruments - Onboard diagnosis system. Security and warning system.

CO-PO MAPPING

No	Course Outcome		PROGRAM OUTCOMES (PO)										
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	To address the underlying concepts and methods Identify electronic components in automobiles.	3											
CO2	Student will learn to Create a Logic circuit by logic gates and use Programmable logic control in automobiles.	3	3										
CO3	Student will able to Select right type of transducer, sensor and actuator.			3	3								
CO4	Student will learn to Select microprocessor for application in automobiles	3	3										

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level of Matching	Justification
CO1-PO1	3	Understand the fundamental knowledge applied in automotive electronics and the purposes it serves.
CO2-PO1	3	Understand the purpose of logic circuit and PLC in modern automobiles
CO2-PO2	3	Learn some basic problems and design parameters associated with each component by applying logic circuit.

СОЗ-РОЗ	3	Analyse the sensor, actuator and transduc in modern automobile.	Analyse the sensor, actuator and transducers function involved in modern automobile.					
CO3-PO4	2	Students can investigate recent technologies involved from different manufacturers and their relative performance upgrades based on sensors and actuators they are using						
CO4-PO1	2	Student will learn the importance of micro automobiles	oprocessor in					
CO4-PO2	3	Analyse the engineering knowledge of mi automobile electronics.	croprocessor in					
TEACHING L	EARNING STR	RATEGY						
Teaching and L	earning Activitie	S	Engagement (hours)					
Face-to-Face Le	earning							
			42					
Self-Directed L	earning		75					
Formal Assessn	nent		5.5					
Total 122.5								
TEACHING METHODOLOGY								
Class Lecture, Pop quiz, Case study, Laboratory visits								

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
Class 1-8	FundamentalsofAutomotiveElectronicsSensors & Actuators	CT 01	
Class 9- 18	ElectronicFuelInjection&IgnitionSystem	CT 02	
Class 19-26	AutomotiveElectrical, DigitalEngineControlSystem	МТ	
Class 27-34	The system approach to control &instrumentation	CT 03	

COs	Assessment Method	(100%)	Remarks
	Class Assessment	t	
2	Assignment	20	
3	Assignment	20	
	Exam		
1	Final Exam, CT	100	
2	Final Exam, CT, Mid	80	
3	Final Exam, CT, Mid	80	
4	Final Exam, CT	100	

REFERENCE BOOKS

- 1. AutomotiveElectronicsHandbook,RonaldK.Jurgen,McGrawHillPublishingCo.,ISBN0 07-034453-1.
- 2. AutomotiveElectricityandElectronics,AlSantini,DelmarPublishers,NY,ISBN0-8273- 6743 -0.
- 3. AutomobileElectrical&ElectronicEquipment's,Young,Griffitns,Butt erworthPublication,London.
- 4. UnderstandingAutomotiveElectronics,Bechfold,SAE1998

Spring/Fall Semester L-4*, T-I/T-II*

COURSE INFORMATION								
Course Code	: ME 469	Lecture Contact Hours	: 3.00					
Course Title	: Vehicle Dynamics	Credit Hours	: 3.00					

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

Vehicle Dynamics is one of core subjects in Mechanical Engineering in universities worldwide. Although road vehicles can be classified into various types based on different purposes, such as the single vehicle, sedan, passenger car, truck and special purpose vehicle, it is the rubber single tyre, single axle, four-wheel vehicle that defines the study object of this course. Based on this case, the traction and brake, ride and handling dynamics theory, as well as theory and design of vehicle control system are presented. Students thus learn about the fundamental theory of vehicle dynamics, vehicle performance as well as related tests and regulations. It is also an important goal to instruct them in the application of the dynamic modeling and analysis approach in vehicle design. The course of Automotive system dynamics can be treated as a core course for undergraduates majoring in vehicle engineering and for students majoring in mechanical engineering as a selected course.

OBJECTIVE

1. To familiarize students with the application of vehicle dynamics theory to practical engineering field.

2. To make students aquatinted with various types of vehicle dynamics models.

3. To familiarize students with the different vehicle tests.

4. Ability to relate chassis system characteristics to vehicle dynamic performance.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assess ment Metho ds
CO1	Apply vehicle dynamics theory to practical evaluation and measurement	1,2	C1, C2, C3	1,4,6			Q, ASG, F

CO2	Articulate various types of vehicle dynamics models	1,3	C2, C3	1,4		Q, ASG, F
CO3	Identify and utilize important vehicle tests commonly used in industry to evaluate ride, steering and handling performance	1,2	C2, C3, C4	1,3	1,2	Q, F, CS
CO4	Relate chassis system characteristics to vehicle dynamic performance	1,2	C3, C4	4,6	1,2	Q, F, CS

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- 1. Review Rigid Body Dynamics
- 2. Tire Mechanics
- 3. Vehicle Handling
- 4. Case Study
- 5. Vehicle Ride
- 6. Suspension Characteristics

b. Detail Contents:

Review of Rigid Body Dynamics. Tire Mechanics: Overview, Terminology, Definitions, Slip, Skid, Rolling Resistance, Elastic Band Model for longitudinal slip, Simple model for lateral slip, Combined, longitudinal/lateral slip (friction ellipse), Taut string model for lateral slip, Magic Tire Formula. Vehicle Handling: Ackerman Steering Geometry, Steady Handling (2 DOF steady-state model), Understeer and Oversteer, Effect of Tire Camber and Vehicle Roll (3 DOF steady-state model), Transient Handling and Directional Stability (2 DOF unsteady model), Effect of Vehicle Roll on Transient Handling (3 DOF unsteady model), Steady-State and Transient Handling of Articulated Vehicles, Case Study 1: On-Center Steering of Passenger Vehicles. Vehicle Ride: Review of Vibration Principles, Human Perception of Vibration, Road Excitation and Vehicle Ride Models (low frequency), Suspension Characteristics: Ride versus Handling, Overview of Random Vibrations, Analysis of Vehicle Ride, Case Study 2: Influence of Seat Dynamics on Vehicle Ride, Case Study 3: Computer Simulation of Ride – Tracked Vehicles

No	Course Outcome			P	RO	GR/	AM (DUT	[CC	ME	ES (PC))	
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	Apply vehicle dynamics theory to practical evaluation and measurement	3	2										
CO2	Articulate various types of vehicle dynamics models	3		2									
CO3	Identify and utilize important vehicle tests commonly used in industry to evaluate ride, steering and handling performance	2	2										
CO4	Relate chassis system characteristics to vehicle dynamic performance	2	1										

CO-PO MAPPING

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING				
Mapping	Level of Matching	Justification		
CO1-PO1	3	Students will be able to know about vehicle dynamics theory		
CO1-PO2	2	Students will develop the ability to apply dynamics theory to practical evaluation and measurement.		
CO2-PO1	3	Students will have the knowledge of various vehicle dynamics models		
CO2-PO3	2	Students will be able to find solution by categorizing the problems into various vehicle dynamic models.		
CO3-PO1	2	The students will attain the knowledge of various vehicle performance tests		
CO3-PO2	2	Students will have an ability to use specific test for evaluating ride, steering and handling performance.		
CO4-PO1	2	Students will learn about the chassis characteristics		
CO4-PO2	1	They will be able to apply the knowledge of chassis characteristics to evaluate vehicle dynamic performance		
TEACHING LEARNING STRATEGY				
Teaching and Learning Activities			Engagement (hours)	
Face-to-Face Learnin	Face-to-Face Learning			
			42	
Self-Directed Learning			75	
Formal Assessment			5.5	
Total			122.5	
TEACHING METHODOLOGY				
Class Lecture, Pop q	uiz, Case study, l	Problem solving		

COURSE SCHEDULE			
Week	Торіс	СТ	Remarks

Class 1-12	Review of Rigid Body Dynamics. Tire Mechanics: Overview, Terminology, Definitions, Slip, Skid, Rolling Resistance, Elastic Band Model for longitudinal slip, Simple model for lateral slip, Combined, longitudinal/lateral slip (friction ellipse), Taut string model for lateral slip, Magic Tire Formula.	CT 01	
Class 13-21	Vehicle Handling: Ackerman Steering Geometry, Steady Handling (2 DOF steady- state model), Understeer and Over-steer, Effect of Tire Camber and Vehicle Roll (3 DOF steady-state model), Transient Handling and Directional Stability (2 DOF unsteady model), Effect of Vehicle Roll on Transient Handling (3 DOF unsteady model), Steady-State and Transient Handling of Articulated Vehicles	CT 02	
Class 22- 30	Case Study 1: On-Center Steering of Passenger Vehicles. Vehicle Ride: Review of Vibration Principles, Human Perception of Vibration, Road Excitation and Vehicle Ride Models (low frequency), Suspension Characteristics: Ride versus Handling, Overview of Random Vibrations, Analysis of Vehicle Ride	МТ	
Class 31- 36	Case Study 2: Influence of Seat Dynamics on Vehicle Ride	CT 03	
Class 37-42	Case Study 3: Computer Simulation of Ride – Tracked Vehicles		

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessme		
1	СТ	20	
2	СТ	30	
3	СТ	30	
	Exam		
1	MID, Final Exam	80	
2	Final Exam	70	

	3	MID, Final Exam	70		
	4	Final Exam	100		
REFERENCE BOOKS					
1. Pacejka, Hans. "Tire and vehicle dynamics". Elsevier, 2005.					
2. Wong, Jo Yung. "Theory of ground vehicles".John Wiley & Sons, 2001.					
3. Moore, Desmond F. "The friction of pneumatic tires." (1975).					
4. Jazar, Reza N. "Vehicle dynamics: theory and application". Springer, 2008					
5. Gillespie, Thomas D. "Fundamentals of vehicle dynamics", 1992.					

Spring/Fall Semester L-4, T- I or II

COURSE INFORMATION					
CourseCode	ME 471	Contact Hours	: 3.00		
Course Title	Bio-Engineering	Credit Hours	: 3.00		
PRE-REQUISITE					
None					
CURRICULUM STRUCTURE					
Outcome Based Education (OBE)					
SYNOPSIS/RATIONALE					

Introduction to human musculoskeletal system; Biomechanics of human movement: applications of engineering mechanics to the movements of muscles, bones and skeletal joints; Material and structural characteristics of bones, ligaments, muscle/tendons and joints - alternative materials.

Introduction to biomechanical fluid mechanics; Engineering approach to the function of circulatory and respiratory systems involving fluid dynamics.

Introduction to biomedical instrumentation; Ultrasound, x-ray, laser, microwave and ultra-violet rays - physics and technology of generation – their use in diagnostic, therapeutic, and processing applications in medicine industry.
OBJECTIVE

- 1. To practice biomedical engineering to serve state and regional industries, hospitals, government agencies, or national and international industries.
- 2. To work professionally in one or more of the following areas: biomedical electronics, medical instrumentation, medical imaging, biomedical signal processing, rehabilitation engineering, neuro engineering, and biomaterials.
- 3. To achieve personal and professional success with awareness and commitment to their ethical and social responsibilities, both as individuals and in team environments.
- 4. To maintain and improve their technical competence through lifelong learning, including entering and succeeding in an advanced degree program in a field such as engineering, science, business, or medicine.

No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Develop knowledge on human physiology, biology and neuroscience to solve the problems at the interface of engineering and biology.	2	C4	7			Q, ASG, F
CO2	Develop the ability to identify and apply appropriate engineering techniques to address the problems associated with the interaction between living and non-living materials and systems.	3	C5	1-4			Q, ASG, F
CO3	Interpret data from living systems to facilitate the understanding of the human body through theoretical models and experimental methods.	4	C4	8			Q, F

LEARNING OUTCOMES & GENERIC SKILLS

CO4	Evaluate alternate assumptions, approaches, procedures, trade-offs, and results related to engineering and biological problems.	4	C5	8			Q, F
-----	--	---	----	---	--	--	------

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

c) Main Contents:

i.Bio-mechanics

ii.Materials for musculoskeletal system

iii.Biomechanical Fluid Mechanics

iv. Biomedical instrumentation

CO-PO MAPPING

No.	Course Outcome	PROGRAM OUTCOMES (PO)											
110.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Develop knowledge on human physiology, biology and neuroscience to solve the problems at the interface of engineering and biology.		3										
CO2	Develop the ability to identify and apply appropriate engineering techniques to Address the problems associated with the interaction between living and non-living materials and systems.			3									

CO3	Interpret data from living systems to facilitate the understanding of the human body through theoretical models and experimental methods.		3				
CO4	Evaluate alternate assumptions, approaches, procedures, trade- offs, and results related to engineering and biological problems.		3				

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING										
Mapping	Level of Matching	Justification								
CO1-PO2	3	Student will able to develop knowledge physiology, biology and neuroscience to at the interface of engineering and biolo	on human solve the problems ogy.							
CO2-PO3	3	Student will able to develop the ability of appropriate engineering techniques to a associated with the interaction between materials and systems.	to identify and apply address the problems living and non-living							
CO3-PO4	3	Student will be able interpret data from living systems to facilitate the understanding of the human body through theoretical models and experimental methods.								
CO4-PO3	2Student will be able to validate alternate assumptions, approaches, procedures, trade-offs, and results related to engineering and biological problems.									
TEACHING LEARNING STRATEGY										
Toophing and L	anning Antivitian		Encocomont (hours)							

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	42

Self-Directed Learning	75						
Formal Assessment	5.5						
Total	122.5						
TEACHING METHODOLOGY							
Class Lecture, Pop quiz, Case study, Problem solving							

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
Class 1 – 15	Bio-mechanics	CT-1	
Class 16 – 22	Materials for musculoskeletal system	CT-2	
Class 23 – 33	Biomechanical Fluid Mechanics	Mid Term	
Class 34 – 42	Biomedical instrumentation	CT-3	

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessment		
1	Assignment	20	
2	Assignment	20	
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	100	
4	Final Exam, CT, Mid	100	

REFERENCE BOOKS

- 1. Review of Medical Physiology W. F. Ganong.
- 2. Introduction to Biomedical Equipment Technology J. T Carr.
- 3. X-Ray Repair J. J. Parichello.
- 4. Biomechanics of Mascalo Skeletal System B. M. Nigg.

Spring/Fall Semester L-4, T- I or II

COURSE INF	ORMATION									
Course Code Course Title	ME 473 Plastic Process Technology	Lecture ContactHours Credit Hours	: 3.00 : 3.00							
PRE-REQUISITE										
None										
CURRICULU	M STRUCTURE									
Outcome Based	d Education (OBE)									
SYNOPSIS/R	ATIONALE									
This unit desc	ribes the skills and knowled	ge required to design and	d produce plastic products							
through the exp	ploration and application of a r	ange of advanced technique	es. It is a specialization unit							
and refers to a	specific design form.									
OBJECTIVE										
1. To identify p	properties and classifications of	f materials for processing in	mplications such as flow							
and treatment.										
2. To interpret	process specifications of mater	rials.								
3. To communi	cate pertinent technical data el	ectronically.								

4. To discuss recent technical developments in plastics affecting molds, materials, and processes

LEARNING OUTCOMES & GENERIC SKILLS												
No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods					
CO1	Develop in-depth understanding of specialist bodies of knowledge within the engineering discipline	1,2	C1, C2	2			Q, ASG, F					
CO2	Apply engineering techniques, tools and resources	2,5	C4	2,5	1		Q, ASG, F					
CO3	Analyze the application of this unit in the workplace in an individual product designer designing and producing a plastic product from a brief. The nature of the plastic product may vary greatly but the outcome would be a complete plastic product.	4,10	C2, C6	4,7	2		Q, F, CS					
CO4	Use a wide range of tools, equipment and materials and the concepts developed would convey strong conceptual and theoretical development. This work would usually be carried out independently although guidance would be available if required	9,12	C3, C5, A5	5,6	1,2		Q, F, CS					

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- 1. Introduction
- 2. Identification of common plastics
- 3. Mills
- 4. Processing of plastic materials
- 5. Reinforcement of plastics

b. Detail Contents:

Introduction; Properties; Testing of properties; Identification of common plastics; Flow behavior; Processing parameters; Degradation; Fillers; Additives; Mixing and compounding; Mills: internal and continuous; Processing of plastic materials: extrusion, injection moulding, thermoforming, below moulding, film blowing, compression moulding, and transfer moulding; Reinforcement of plastics; Calendering and laminating; Instrumentation and control.

CO-PO MAPPING

No.	Course Outcome				PRO	DGF	RAM	OU	UTCO	OME	ES (PO	C)	
1.00		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Develop in-depth understanding of specialist bodies of knowledge within the engineering discipline	3	3										
CO2	Apply engineering techniques, tools and resources		2			3							
CO3	Analyze the application of this unit in the workplace in an individual product designer designing and producing a plastic product from a brief. The nature of the plastic product may vary				3						3		

	greatly but the outcome would be a complete plastic product.							
CO4	Use a wide range of tools, equipment and materials and the concepts developed would convey strong conceptual and theoretical development. This work would usually be carried out independently although guidance would be available if required					3		3

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level of Matching	Justification
CO1-PO1	3	Describing different aspects and components of plastic process technology.
CO1-PO2	3	Students will be able to develop in-depth understanding of specialist bodies of knowledge within the engineering discipline
CO2-PO2	2	Students will be able to apply engineering techniques
CO2-PO5	3	Students will also have in depth knowledge about tools and resources
CO3-PO4	3	Students will attain the knowledge to analyze the application of this unit in the workplace in an individual product designer designing and producing a plastic product from a brief.
CO3-PO10	3	Students will be able to estimate the nature of the plastic

		product may vary greatly but the outcome would be a complete plastic product						
CO4-PO9	3	Students will acquire knowledge to use a wide range of tools, equipment and materials and the concepts developed would convey strong conceptual and theoretical development.						
CO4-PO12	3	Students will go through various work which usually be carried out independently although guidance would be available if required.						
TEACHING L	EARNING STR	ATEGY						
Teaching and L	earning Activities	\$	Engagement (hours)					
Face-to-Face Lo	42							
Self-Directed L	earning		75					
Formal Assess	nent		5.5					
Total 122.5								
TEACHING METHODOLOGY								
Class Lecture, Pop quiz, Case study, Problem solving								

COURSE SCHEDULE

Week	Торіс	СТ
1-4	Introduction; Properties; Testing of properties; Identification of common plastics; Flow behavior;	CT 01
	Processing parameters; Degradation; Fillers;	
5-7	Additives; Mixing and compounding;	CT 02
8-9	Mills: internal and continuous; Processing of plastic materials: extrusion, injection moulding,	CT 03
10-12	Thermoforming, below moulding, film blowing, compression moulding, and transfer moulding;.	MT
13	Reinforcement of plastics; Calendering and laminating;	
14	Instrumentation and control	

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessmer		
1	Assignment	20	
2	Assignment	30	
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	70	
3	Final Exam, CT	100	
4	Final Exam, CT, Mid	100	

REFERENCE BOOKS

- 1. Principles of Polymer Engineering N. G. McCrum, P. C. Buckley, C. B Bucknall.
- 2. Plastic Process Engineering James L, Throne.

Spring/Fall Semester L-4, T- I or II

COURSE INFORMATION										
Course Code Course Title Modern Manufacturit Technology			I (Lecture Contact Credit Hours		s : 3.00 : 3.00				
PRE-	PRE-REQUISITE									
ME-2	ME-233									
CURI	RICULU	M STRUCTURE								
Outco	me Base	d Education (OBE)								
SYNC)PSIS/R	ATIONALE								
The m	odern m	anufacturing technolo	gies such as cor	nputer-integrat	ed mar	nufact	uring	(CIMs),		
CNC,	high sp	beed machining, rap	id prototyping,	reverse engin	eering	, 3D	printi	ng and		
roboti	cs and a	utomation will be co	vered. Some in	dustrial compo	onents	will t	be used	1 as the		
case st	tudies.									
OBJE	CTIVE									
1.	To prov	vide students to choos	e the best castin	g and forming	process	s for a	a speci	fic		
2.	Evaluat product manufa	te the better way of m ts by means of various cturing machines.	anufacturing and s manufacturing	l construction of processes and	of mecl the cor	hanica respo	al parts nding	s or		
 To analyse and evaluate the benefits of modern manufacturing processes and discuss their limitations 										
LEARNING OUTCOMES & GENERIC SKILLS										
No.	Co	ourse Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Asses sment Meth ods		
CO1	Unders theoreti	tand how to use the cal knowledge of	1,5	C1, C3	3			Q, ASG,		

F

processes when a specific

various manufacturing

	product has to be manufactured.					
CO2	Analyze, compare and finally gain theoretical experience for the advantages and limitations of different manufacturing processes.	2,4	C3	2,4	1	Q, ASG, F
CO3	Classify manufacturing processes according to the needs of products construction.	3,4	C5, C6	7	2	Q, F, CS
CO4	Design the production of a mechanical component or a specific product using the manufacturing processes of casting, bulk deformation, sheet-metal forming, materialremoval and Joining.	3,12	C5, C6	4,6	1,2	Q, F, CS

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- 1. General Introduction
- 2. Casting processes
- 3. Bulk deformation processes.
- 4. Joining Processes

5. Sheet-metal forming processes

b. Detail Contents:

Design for Manufacture, The Design Process, Selecting Materials and Manufacturing Process, Product quality, Manufacturing automation, Economics of Manufacture .Solidification of Metals, Cast Structures, Casing Alloys, Ingot Casting and Continuous Casting, Casting Processes, Expendable Mold,

Permanent Mold, Processing of Casting and Casting Design, Forging, Rolling, Cold and hot Extrusion \Box Rod, Wire and Tube Drawing
Die Manufacturing Methods, Die Failures, Sheet-Metal Characteristics, Shearing, Bending of Sheet and Plate, Stretch Forming, Bulging, Deep-Drawing, Formability of Sheet Metals, Oxyfuel Gas Welding, Thermit Welding, Consumable and Nonconsumable Electrode, Resistance Welding, SolidState Welding, Electron-Beam Welding 🗆 Laser Beam Welding \Box The welded Joint, Manufacturing Systems, Computer-Integrated-Manufacturing, Computer-Aided-Design, Group Technology, Cellular manufacturing, Flexible manufacturing systems, Just-in-time production.

No.	Course Outco e			P	ROG	RAN	N OI	JTC	ON	ies ((PO)		
		1	2	3	4	5	6	7	8	9	10	11	12
C01	Understand how to use the theoretical knowledge of various manufacturing processes when a specific product has to be manufactured.	3				3							
CO2	Analyze, compare and finally gain theoretical experience for the advantages and limitations of different manufacturing processes.		3		3								

CO-PO MAPPING

CO3	Classify manufacturing processes according to the needs of products construction.		2	3				
CO4	Design the production of a mechanical component or a specific product using the manufacturing processes of casting, bulk deformation, sheet-metal forming, materialremoval and Joining.		3					3

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING									
Mapping	Level of Matching	Justification							
CO1-PO1	3	Students should understand how to use the theoretical knowledge of various manufacturing processes.							
CO1-PO5	3	Student will know when a specific product has to be manufactured.							
CO2-PO2	3	Analyze, compare and finally gain theoretical experience for the advantages.							
CO2-PO4	3	Students should understand the limitations of different manufacturing processes.							
СО3-РО3	2	Students should learn to classify manufacturing							

		processes according to the needs of products construction						
СОЗ-РО4	3	Students will go through various handbook for design practice						
CO4-PO3	3	Student will practice to Design the production of a mechanical component or a specific product using the manufacturing processes of casting.						
CO4-PO12	3	Students will go through various handbook for design practice						
TEACHING LEARNING STRATEGY								
Teaching and L	Engagement (hours)							
Face-to-Face Le	earning		42					
Self-Directed L	earning		75					
Formal Assessn	nent		5.5					
Total 122.5								
TEACHING METHODOLOGY								
Class Lecture, Pop quiz, Case study, Problem solving								

COURSE SCHEDULE							
Week	Торіс	СТ					
1-4	Design for Manufacture, The Design Process, Selecting Materials and Manufacturing Process, Product quality,	CT 01					
	Manufacturing automation, Economics of Manufacture	-					
5-7	Solidification of Metals, Cast Structures, Casing Alloys, Ingot Casting and Continuous Casting						
8-9	Die Manufacturing Methods, Die Failures, Sheet-Metal Characteristics	CT 02					
10-12	Thermit Welding, Consumable and Non- consumable Electrode, Resistance Welding	МТ					
13	Electron-Beam Welding Laser Beam Welding The welded Joint	CT 03					
14	Computer-Integrated-Manufacturing, Computer-Aided-Design, Group Technology, Cellular manufacturing						

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks				
	Class As ssme	ent					
1	Assignment	20					
2	Assignment						
	Exam						
1	Final Exam, CT	80					
2	Final Exam, CT, MID	80					
3	Final Exam, CT	100					
4	Final Exam, CT, Mid	100					

REFERENCE BOOKS

1. Metal Cutting and High Speed Machining by D. Dudzinski, A. Molinari, H. Schulz, Plenum Pub Corp, 2002.

2. Buffa and Sarin – Modern Production / Operations Management, 8th ed., John Wiley & Sons (Asia) Pvt. Ltd

3. Russell & Taylor – Operations Management, Wiley India Pvt. Ltd.

4. Fundamentals of Modern Manufacturing: Materials, Processes, and Systems by Mikell P. Groover, John Wiley & Sons, 2nd edition 2001.

Spring/Fall Semester, L-4,T- I or II

COURSE INFORMATION									
Course Code	ME 477	Lecture Contact Hours	: 3.00						
Course Title	Metal Cutting Processes Credit Hours		: 3.00						
PRE-REQUIS	SITE								
None									
CURRICULU	M STRUCTURE								
Outcome Base	d Education (OBE)								
SYNOPSIS/RATIONALE									
This unit of competency sets out the knowledge and skills required to undertake basic cutting									
operations und	operations under supervision. This involves setting up and cutting components by using								

operations under supervision. This involves setting up and cutting components by using lathes, milling machines, cut off saws, pedestal grinders and fixed position drilling machines. Marking out skills are also included as necessary in the cutting process.

OBJECTIVE

1.To undertake basic cutting operations under supervision.

2. To introduce the setup and cutting components by using lathes, milling machines, cut off saws, pedestal grinders and fixed position drilling machines. Marking out skills are also included as necessary in the cutting process.

LEARNING OUTCOMES & GENERIC SKILLS											
No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Asses sment Meth ods				
CO1	Sequence operations, identifying and clarifying application requirements	1,2	C1, C3	1			Q, ASG, F				
CO2	Identify specifications and required resources, reviewing and revising outcomes against task objectives and requirements	4,5	C3	2,5	1		Q, ASG, F				
CO3	Interpret information and specifications categorizing manufacturing methods, developing enterprise procedures, calculations relating to engineering processes within the scope of this unit.	1,5	C5, C6	4,6	1		Q, F, CS				
CO4	Access information sources using a variety of methods, applications, features and principles of engineering processes	11,12	C5, C6	5,6	1,2		Q, F, CS				
(CP- C Projec Final I	Complex Problems, CA-Comp t ; Q – Quiz; ASG – Assignme Exam)	lex Activities, KP ent; Pr – Presentat	-Knowledge ion; R - Repo	Profile ort; CS	e, T − ' − Cas	Test ; I se stud	PR – y, F –				

COURSE CONTENT

a. Main Contents:

1. Introduction

2. Types of chip

- 3. Tool materials
- 4. Economics of metal cutting
- 5. Gear and thread

b. Detail Contents:

Theory of metal cutting: mechanism of chip formation, chip breaker, chip-tool contact process, types of chip. Tool materials, tool design and manufacturing.

Theoretical and experimental determination of cutting forces; Heat phenomenon; Cutting fluid, Tool wear and tool life; Economics of metal cutting. Gear and thread manufacturing processes.

No. Course Outcome					PRO	GRA	M C	OUTO	COM	ES (PO)	_	
110.	Course Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Sequence operations, identifying and clarifying application requirements	3	3										
CO2	Identify specifications and required resources, reviewing and revising outcomes against task objectives and requirements				3	2							
CO3	Interpret information and specifications categorizing manufacturing methods, developing enterprise procedures, calculations relating to engineering processes within the scope of this unit.	3				3							
CO4	Access information sources using a variety of methods, applications, features and principles of engineering processes											3	3

CO-PO MAPPING

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING								
Mapping	Level of Matching	Justification						
CO1-PO1	3	Student will be able to describe differen requirements.	nt application					
CO1-PO2	3	Students will be able to identify sequence	ce operations.					
CO2-PO4	3	Students will be able to identify specification required resources.	Students will be able to identify specifications and required resources.					
CO2-PO5	2	Students will also have in depth knowledge about reviewing and revising outcomes against task objectives and requirements.						
CO3-PO1	3	Students will attain the knowledge to interpret information and specifications categorizing manufacturing methods.						
СО3-РО5	3	Students will be able to develop enterprise procedures, calculations relating to engineering processes within the scope of this unit.						
CO4-PO11	3	Students will acquire knowledge to accessources using a variety of methods and approximation of the statemethod of the statem	ess information plications.					
CO4-PO12	3	Students will gain informative knowled features and principles of engineering pro	ge using cesses					
TEACHING L	EARNING STR	ATEGY						
Teaching and L	earning Activities	3	Engagement (hours)					
Face-to-Face Le	42							
Self-Directed L	75							

Formal Assessment	5.5
Total	122.5
TEACHING METHODOLOGY	
Class Lecture, Pop uiz, Case study, Problem solving	

COURSE SCHEDULE

Week	Торіс	СТ
1-4	Theory of metal cutting: mechanism of chip formation, chip breaker, chip-tool contact process, types of chip.	CT 01
5-7	Tool materials, tool design and manufacturing	CT 02
8-9	Theoretical and experimental determination of cutting forces;	MT CT 03
10-12	Heat phenomenon; Cutting fluid, Tool wear and tool life	
13	Economics of metal cutting.	CT 04
14	Gear and thread manufacturing processes	

ASSESSMENT STRATEGY

COs	Assessment Method	Remarks	
	Class Assessmer		
1	Assignment	20	
2	Assignment		
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	100	
4	Final Exam, CT, Mid	100	

REFERENCE BOOKS

1. Application of Metal Cutting Theory – Fryderyk E. Gorczyca, Publisher – Industrial press, 1987.

2. Machine Tools – Chernov.

3. Machine Tools Design – N. Acharkhan.

4. Machine Tool Practices – Richard R. Kibbe, Roland O. Meyer, Warren T. White, John E. Neely.

5. Machine Tool operations – Steve F. Krar, Joseph V. St, Amand, J. William Oswald.

Spring/Fall Semester L-4, T- I or II

COURSE INFORMATION										
	N/E 470	l l l l l l l l l l l l l l l l l l l								
Course Code	: ME 479	Lesture Contest Hours	. 2.00							
Course Code	Occupational Haalth and Safaty	Lecture Contact Hours	: 5.00							
Course Title	En sin serie s	Credit Hours	· 3 00							
	Engineering		. 5.00							
PRE-REOUIS	SITE	1	<u>,</u>							
None										
CUDDICUU	MODICTUDE									
CURRICULU	MSIRUCIURE									
Outcome Base	d Education (OBE)									
o accome Base										
SYNOPSIS/R	ATIONALE									
Application of	human factors (ergonomics) and engine	eering practice in accident	prevention							
and the reduct	ion of health hazards in the occupationa	l environment are present	ed. Special							
	· · · · · · · · · · · · · · · · · · ·									
attention is dev	voted to the detection and correction of h	azards and to contemporate	ry laws and							
enforcement on occupational safety and health										
enforcement on occupational safety and health.										
OBJECTIVE										

To provide an understanding of the safety and health practices which fall within the responsibilities of the engineer in the occupational environment.

LEARNING OUTCOMES & GENERIC SKILLS												
No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Asses sment Meth ods					
CO1	Understand the basic safety and health practices in the occupational environment	11	C3	6			Q, ASG, F					
CO2	Application of human factors and engineering practice in accident prevention and reduction of health hazard	11	C3, C5	6			Q, ASG, F					
CO3	Investigation on the detection and correction of hazards	11	C3, C5	6			Q, F					
(CP- (Projec Final I	Complex Problems, CA-Comp t; Q – Quiz; ASG – Assignm Exam)	olex Activities, K lent; Pr – Presenta	P-Knowledge ation; R - Rep	e Profi port; C	le, T S – C	– Test ase stu	; PR – idy, F –					

COURSE CONTENT

Sustainability & Human-Cantered Design; Product Safety & Liability; Hazard Assessment, Prevention & Control; Safety-First Corporate Culture; Ethical Behaviour in Organizations & Company's Role; Best Practices in Safety Management; Accidents & Their Effects; Injuries & Workers' Compensation; Theories of Accident Causation; Integrated Approaches to Safety & Health; Personal Monitoring for Radiation Hazards; Noise & Vibration Hazards; Fall Protection Standards; Safety Training & A Teamwork Approach to Promoting Safety; Historical Perspectives & Community Right-to-Know Act; Risk Reduction Strategies; Human Factors & Ergonomic Hazards; Economics of Ergonomics; Industrial Hygiene & Confined Spaces; Green Chemistry & the EPA; Quality Management and Safety; OSHA Policies & European REACH Regulations for Toxic Chemicals; Comparing ISO Processes & Standards on Environment, Risk Management,

Energy Management, Quality & Ergonomics.

CO-PO MAPPING

No.	Course Outcome		PROGRAM OUTCOMES (PO)										
		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Understand the basic safety and health practices in the occupational environment											3	
CO2	Application of human factors and engineering practice in accident prevention and reduction of health hazard											3	
CO3	Investigation on the detection and correction of hazards											3	

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING								
Mapping	Level of Matching	Justification						
CO1-PO11	3	Project management skills will be achieved						
CO2-PO11	3	Project management skills will be achieved						
CO3-PO11	3	Project management skills will be achieved						
TEACHING L	EARNING STR	ATEGY						
Teaching and Lo	earning Activities		Engagement (hours)					
Face-to-Face Le	earning							
	42							
Self-Directed Le	75							

Formal Assessment	5.5
Total	122.5

TEACHING METHODOLOGY

Class Lecture, Pop quiz, Case study, Problem solving

COURSE SCHEDULE

Wook	Tonic	СТ	Remarks	
Class 1 – 9	Sustainability & Human-Cantered Design; Product Safety & Liability; Hazard Assessment, Prevention & Control; Safety-First Corporate Culture; Ethical Behaviour in Organizations & Company's Role	CT 1		
Class 10 – 18	Best Practices in Safety Management; Accidents & Their Effects; Injuries & Workers' Compensation; Theories of Accident Causation; Integrated Approaches to Safety & Health;	CT 2		
Class 19 – 27	Personal Monitoring for Radiation Hazards; Noise & Vibration Hazards; Fall Protection Standards; Safety Training & A Teamwork Approach to Promoting Safety;	MID		
Class 28 – 33	Historical Perspectives & Community Right-to-Know Act; Risk Reduction Strategies; Human Factors & Ergonomic Hazards; Economics of Ergonomics;	CT 3		
Class 34 – 42	Industrial Hygiene & Confined Spaces; Green Chemistry & the EPA; Quality Management and Safety; OSHA Policies & European REACH Regulations for Toxic Chemicals; Comparing ISO Processes & Standards on Environment, Risk Management, Energy Management, Quality & Ergonomics.	CT 4		
ASSESSMENT STRATEGY				

COs	Assessment Method	(100%)	Remarks	
	Class Assessment			
1	Assignment	20		

	2	Assignment	20				
		Exam					
	1	Final Exam, CT	80				
	2	Final Exam, CT, MID	80				
	3	Final Exam, CT	80				
	4	Final Exam, CT, Mid	80				
REFERENCE BOOKS							
1.D.L. Goetsch, 2019. Occupational Safety and Health, 9 th Ed., Prentice-Hall							

Spring/Fall Semester L-4, T- I or II

COURSE INFORMATION							
Course Code Course Title	ode tle: ME 483 : Standard and InspectionLecture Contact Hours Credit Hours: : : : : : : : : : : : : : : : : : :						
PRE-REQUIS	SITE		1				
None							
CURRICULU	M STRUCTURE						
Outcome Base	d Education (OBE)						
SYNOPSIS/R	ATIONALE						
To introduce t	the students with various types of	f international standard	organizations and				
standards follo	wed all over the world and various	types of inspection proc	edure adopted for				
inspecting vari	ous fields of mechanical engineerin	g discipline					
OBJECTIVE							
1. Introduce the	e student with various standards use	ed all over the world					
2. To give an id	dea about developing a standard						
3. To give an idea about various types of inspections happens in industry							
4. To provide elementary idea of inspecting and preparing necessary document							

LEAF	LEARNING OUTCOMES & GENERIC SKILLS							
No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Asses sment Meth ods	
CO1	Demonstrate knowledge on international standard organizations and standards	1, 12	C1, C3	4			Q, ASG, F	
CO2	Demonstrate knowledge to develop new standards and selection of a standard for specific purpose	6, 7	C3, C4	7			Q, ASG, F	
CO3	Demonstrate knowledge of various inspection technique	1	C5, C6	4			Q, F, CS	
CO4	Design of inspection procedure	6,12	C5, C6	6,7	1,2		Q, F, CS, Pr	
- ((`P_((CP- Complex Problems CA-Complex Activities KP-Knowledge Profile T – Test · PR –							

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- 1. International standard organizations
- 2. Selection of standard
- 3. Various types of inspections
- 4. Preparing for inspection

b. Detail Contents:

History of standards; Various international standards, Introduction to ASME, SAE, ANSI, ISO, ASTM standards; Role of standard organizations, Process of developing international standards, How to use various international standards, Inspection and its necessity, Inspection in automotive industry, Fire safety inspection, Building inspection, system

component inspection, power plant inspection, Preparation of inspection procedure and documents.

CO-PO MAPPING

No	No. Course Outcome	PROGRAM OUTCOMES (PO)											
110.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Demonstrate knowledge on international standard organizations and standards	3											2
CO2	Demonstrate knowledge to develop new standards and selection of a standard for specific purpose						3	3					
CO3	Demonstrate knowledge of various inspection technique	3											
CO4	Design of inspection procedure						3						3

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level of Matching	Justification
CO1-PO1	3	Students will gain knowledge on engineering practice in the discipline regarding various standards
CO1-PO12	2	Students will have a life-long learning regarding various standards used in the field and go through in depth literature review about those standards

CO2-PO6	3	Students will learn to select standards for specific task considering societal, economic, cultural etc. considerations					
CO2-PO7	3	Students will learn to select standards for considering ethical and social consideration	Students will learn to select standards for a specific task considering ethical and social considerations				
CO3-PO1	3	Students will gain knowledge on engineer the discipline regarding inspection proced	ring practice in lures				
CO4-PO6	3	Students will learn to select/design inspection procedure for specific task considering societal, economic, cultural etc. considerations					
CO4-PO12	3	Student will be able to design and compare inspection technique while doing complex literature survey					
TEACHING L	EARNING STI	RATEGY					
Teaching and Learning Activities Engagement (hours)							
Face-to-Face Le	42						
Self-Directed L	Self-Directed Learning						
Formal Assessn	ient		5.5				
Total	122.5						
TEACHING METHODOLOGY							
Class Lecture, Pop quiz, Case study, Problem solving							

COURSE SCHEDULE

Week	Торіс	СТ
Class 1-9	History of standards organizations, Various international standards	CT 01
Class 10-15	Role of standard organizations, Process of developing international standards	
Class 16- 25	How to use various international standards	CT 02
Class 26- 36	Inspection and its necessity, Inspection in automotive industry, Fire safety inspection, Building inspection, system component inspection, power plant inspection	MT & CT 03
Class 36-42	Preparation of inspection procedure and documents	CT 04

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
1	Assignment	20	
2	Assignment	20	
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	100	
4	Final Exam, CT, Mid	100	

REFERENCE BOOKS

1. ASME, ANSI, SAE handbook and various manuals

Spring/Fall Semester L-4, T- I or II

COURSE INFORMATION					
Course CodeCourse Fitle	: ME 485 : Introduction to Nuclear Engineering	Lecture Contact Hours Credit Hours	: 3.00 : 3.00		
DDE DEOLU					

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

World energy resources; Importance of fission energy; Atomic structure; Nuclear energy and nuclear forces; Nuclear fission and fusion processes; Nuclear fission reactors; Reactors controls; Reactor coolants; Process waste disposal and safety; Nuclear power reactor systems; Safety, Safeguard, and Security of Nuclear power plant; Introduction to nuclear medicine.

OBJECTIVE

1. To introduce nuclear science and its engineering applications.

LEARNING OUTCOMES & CENERIC SKILLS

- 2. To describe basic nuclear models, radioactivity, nuclear reactions and kinematics; covers the interaction of ionizing radiation with matter, with an emphasis on radiation detection, radiation shielding, and radiation effects on human health.
- 3. To present energy systems based on fission and fusion nuclear reactions, as well as industrial and medical applications of nuclear science.

No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Asses sment Meth ods		
CO1	Apply nuclear engineering techniques, tools and resources by developing	1	C3	7			Q, ASG, F		

•		Т		Т	<u>г т</u>	<u>гтт</u>				
	fluency in basic nuclear physics.									
	F 7									
CO2	Develop knowledge of contextual factors impacting the engineering discipline and learn about seminal radiation experiments and hypothesis.	2	C2	1-4			Q, ASG, F			
CO3	Describe the origins, interactions, uses, detection and biological/chemical effects of ionizing radiations to explore systems and reactors that use radiation.	2	C2	8			Q, F			
(CP- C	Complex Problems, CA-Comp	Jex Activities, KI	-Knowledge	Profile	T - T	Fest; P	⁷ R –			
Final I	t; Q – Quiz, Aso – Assignin Exam)	ent; PI – 1100mu	11011; r - rep	ori, Co	- Cao	e stuaj	/, г —			
COU	RSE CONTENT	COURSE CONTENT								
d) Main Contents:										
,	Main Contents:									
	Main Contents: I. Sources of energy, Fi	ission energy; Ato	mic structure	;;						
	Main Contents: I. Sources of energy, F II. Nuclear fission and f	ission energy; Ato usion processes; I	omic structure Nuclear fissio	»; n reacte	ors;					
	Main Contents: I. Sources of energy, F II. Nuclear fission and f III. Reactors controls, Re	ission energy; Atc usion processes; I actor coolants; N	omic structure Nuclear fissio uclear power	; n react reactor	ors; : syste	ms;				
	Main Contents:I.Sources of energy, F.II.Nuclear fission and fIII.Reactors controls, ReIV.Process waste dispose	ission energy; Ato `usion processes; 1 >actor coolants; N al and safety;	omic structure Nuclear fissio uclear power	; n react reactor	ors; r syste	ms;				
	Main Contents: I. Sources of energy, F. II. Nuclear fission and f. III. Reactors controls, Re IV. Process waste dispos V. Safety, Safeguard, and	ission energy; Ato usion processes; 1 eactor coolants; N al and safety; d Security of Nuc	omic structure Nuclear fissio uclear power	e; n react reactor lant.	ors; ſ syste	ms;				
СО-Р	Main Contents: I. Sources of energy, F. II. Nuclear fission and f III. Reactors controls, Re IV. Process waste dispos V. Safety, Safeguard, an O MAPPING	ission energy; Ato usion processes; 1 eactor coolants; N al and safety; d Security of Nuc	omic structure Nuclear fissio uclear power	e; in react reactor lant.	ors; r syste	ems;				
CO-P	Main Contents: I. Sources of energy, F. II. Nuclear fission and f III. Reactors controls, Re IV. Process waste dispos V. Safety, Safeguard, and O MAPPING P	ission energy; Ato iusion processes; 1 eactor coolants; N al and safety; nd Security of Nuc	omic structure Nuclear fissio uclear power	e; in react reactor lant.	ors; r syste	ems;				

CO1	Apply nuclear engineering techniques, tools and resources by developing fluency in basic nuclear physics.	3						
CO2	Develop knowledge of contextual factors impacting the engineering discipline and learn about seminal radiation experiments and hypothesis.		3					
CO3	Describe the origins, interactions, uses, detection and biological/chemical effects of ionizing radiations to explore systems and reactors that use radiation.		3					

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING							
Mapping	Level of Matching	Justification					
CO1-PO1	3	Students will be able to apply nuclear engineering techniques, tools and resources by developing fluency in basic nuclear physics.					
CO2-PO2	3	Students will be able to develop knowledge of contextual factors impacting the engineering discipline and learn about seminal radiation experiments and hypothesis.					
CO3-PO2	3	Students will be able to describe the origins, interactions, uses, detection and biological/chemical effects of ionizing radiations to explore systems and reactors that use radiation.					

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
	42
Self-Directed Learning	75
Formal Assessment	5.5
Total	122.5
TEACHING METHODOLOGY	•
Class Lecture, Pop quiz, Case study, Problem solving	

COURSE SCHEDULE						
Week	Торіс	СТ	Remarks			
Class 1 – 9	Sources of energy, Fission energy; Atomic structure;	CT 1				
Class 10 – 19	Nuclear fission and fusion processes; Nuclear fission reactors;	CT 2				
Class 20 – 30	Reactors controls, Reactor coolants; Nuclear power reactor systems;	MID				
Class 31 – 36	Process waste disposal and safety;	CT 3				
Class 36 – 42	Safety, Safeguard, and Security of Nuclear power plant.	CT 4				

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessment		
1	Assignment	20	
2	Assignment	20	
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	100	
4	Final Exam CT Mid	100	

REFERENCE BOOKS

- 1) Introduction to Nuclear Engineering Paperback 2014-John R. & Baratta Anthony
 - J. Lamarsh
- 2) Fundamentals of Nuclear Science and Engineering 1st Edition-J. Kenneth Shultis,

Richard E. Faw

Spring/Fall Semester L-4, T- I or II

COURSE INFORMATION							
Course Code Course Title	ME 487 Fools Engineering	LectureContact Hours Credit Hours	3.00 3.00				
PRE-REQUIS	ITE						
ME 233 – Man	ufacturing Technology						
CURRICULU	M STRUCTURE						
Outcome Based	l Education (OBE)						
SYNOPSIS/RA	ATIONALE						
After successf	After successfully completing the course, the student would have acquired relevant						
appropriate and adequate technical knowledge together with the professional skills and							
competencies ir	n the field of Industrial Tool Man	ufacturing so that he/she is pro	perly equipped				
to take up gainf	ul employment.						

OBJECTIVE

1. Introduce the student to processes and equipment utilized in the manufacturing

environment.

2. Compare and contrast different tool material types and their application.

3. Introduce the concepts of tool monitoring and control processes.

4. Explain different forms of production logistics in a tool making process.

LEAR	RNING OUTCOMES & GENERI	C SKILLS					
No.	Course Outcome	Correspondin g PO	Bloom' s Taxono my	СР	CA	KP	Asse ssme nt Met hods
CO1	Explain working of grinding, super finishing, gear cutting, broaching, threading, non- conventional and advance machining methods with kinematics and coolant/ lubrication systems stating functions of each element.	1,5	C1, C2				Q, F
CO2	Analyse, compare and finally gain theoretical experience for the advantages and limitations of different machine tools.	1,4	C1, C3				Q,F
CO3	Reduce vibration and chatter developing on machine tools.	2,3	C2, C3, C4			3,4 ,5	Q, ASG , F
CO4	Design the production of a mechanical component or a specific product by Apply various design aspects of spindles and bearings.	3,4	C2, C3, C4			3,4	Q, ASG , F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

General classification of machine tools, working and auxiliary motions, Hydraulics transmission and its elements, Mechanical transmission and its elements, General requirement of machine tools. Stepped and step less drive, Basic considerations in the design ofdrives, Variable speed range in machine tools, Graphical representation of speed, structure diagram, selection of optimum ray diagram, Design of speed and feed gear boxes, step-less regulation ofspeed and feed rates.Design criteria, materials, static and dynamic stiffness, Basic dynamic stiffness, Basic design procedure, design of beds and columns,
Model technique in design of machine tool structures. Classification of guideways, material and Lubrication, design criteria and calculations for guideways, designs of guides under hydrostatic lubrication, Aerostatic slideways, Antifriction guideways, Combination guideways, classification of power screws, Design principles of power screws, Recirculating power screws assemblies, Elimination of backlash.: Materials of spindles, Effect of machine tool compliance on machining accuracy.

CO-PO MAPPING

No	Course	Loorning Outcome			Р	ROC	GRA	MO	UTC	COM	IES	(PO)		
INO.	Course		1	2	3	4	5	6	7	8	9	10	11	12
	Explain	n working of												
	grindin	g, super finishing,												
	gear cu	tting, broaching,												
	threadin	ng, non-												
CO1	conven	tional and advance					3							
	machin	ing methods with												
	kinema	tics and coolant/												
	lubricat	tion systems stating												
	function	ns of each element.												
	Analyse	e, compare and												
COD	finally	gain theoretical	2			2								
02	experie	nce for the	3			2								
	of diffo	rent machine tools												
	Reduce													
CO3	chatter	developing on		2	3									
005	machin	e tools.		2	5									
	Design	the production of a												
	mechan	nical component or												
	a specif	fic product by												
CO4	Apply	various design			3	2								
	aspects	of spindles and												
	bearing	S.												
L														
Justi	ification	for CO-PO mappi	ng:											
Map	ping	Corresponding	Justifications											
		Level of	-											
		matching												
CO	Under	rstand	the	fund	amei	ntal	know	ledg	ge ap	plied	in too	ol		
			manu	factur	ing a	ind t	he pı	irpos	ses it	serv	ves.			
CO1-PO5 3			Stude	nts w	ill ap	ply a	appro	pria	te te	chni	ques	, reso	urces,	and
				rn eng	ginee	rıng	ot m	achi	nıng	to i	mpro	ove pr	oduct	1vity
	0 DO 1		of ind	ustry.		1	1 1		1.	1.		<u> </u>	•	1
	2-PO1	3	Under	rstand	the	KNOV	viedg	ge ap	plie	1 1N	man	utactu	iring a	and
	2 DO 4		the pt	irpose	$\frac{1}{1}$ s it s	erve	<u>s.</u>		. 4 4	1.	1. '		- 1 1	£
CO2-PO4 2			Stude	nts ca	n 1nv	vest1	gate i	recei	nt teo	chno	logi	es inv	olved	Irom

		different manufacturers and their relative performance
		upgrades.
CO3-PO2	2	Learn some basic problems and design parameters
		associated with each component.
CO3-PO4	3	Students can investigate recent technologies involved from
		different manufacturers and their relative performance
		upgrades.
CO4 PO2	3	Analyse similar possible linkages which can serve the same
C04-P05	5	purpose and learn the most suitable design
		Students can investigate recent technologies involved from
CO4-PO4	4	different manufacturers and their relative performance
		upgrades.

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	42
Self-Directed Learning	75
Formal Assessment	5.5
Total	122.5

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE S	CHEDULE							
Week-1	General classification of machine tools, working and auxiliary motions							
Week-2	Hydraulics transmission and its elements, Mechanical transmission and its elements							
Week-3	General requirement of machine tools. Stepped and step less drive							
Week-4	Basic considerations in the design of drives, Variable speed range in machine tools							
Week-5	Graphical representation of speed, structure diagram							
Week-6	selection of optimum ray diagram							
Week-7	Design of speed and feed gear boxes							
Week-8	step-less regulation of speed and feed rates. Design criteria, materials							
Week-9	static and dynamic stiffness, Basic dynamic stiffness							
Week-10	Basic design procedure, design of beds and columns, Model technique in design of machine tool structures							
Week-11	Classification of guideways, material and Lubrication, design criteria and calculations for guideways							
Week-12	designs of guides under hydrostatic lubrication, Aerostatic slideways, Antifriction guideways, Combination guideways							

Week-13	Reviews			
Week-14	Quiz			
ASSESSMI	ENT STRAT	EGY		
	COs	Assessment Method	(100%)	Remarks
		Class Assessmen	nt	
	CO1	СТ	30	
	CO2	Mid	45	
	CO3	СТ	20	
	CO4	СТ	20	
		Exam		
	CO1	Final	70	
	CO2	Final	55	
	CO3	Final	80	
	CO4	Final	80	
	~ ~ ~	a a		
(CO =	Course Outc	ome, C = Cognitive Dom	ain, P = Psy	chomotor I
		Affective Dom	ain)	

REFERENCE BOOKS

1.Computer-Aided Design and Manufacture - Prepared by Khoi Hoang for UNSW -

MacGraw-Hill Custom Publishing 2. Principles of CAD - Medland, A. J

3. "Computer Integrated Design and Manufacturing" - David Bedworth and Philip Wolfe 4. CAD/CAM: Principles and Applications - J. Srinivas 5. "Computer Aided Manufacturing" - P N Rao

REFERENCE SITE

None

Spring/Fall Semester L-4, T- I or II

COURSE INFORMATION									
Course Code Course Title	ME 489 Automobile Maintenance Engineering	Lecture Contact Hours Credit Hours	: 3.00 : 3.00						
PRE-REQUIS	PRE-REQUISITE								
ME-367 Intro	duction to Automobile Engineer	ing							
CURRICULU	M STRUCTURE								
Outcome Based	d Education (OBE)								
SYNOPSIS/R.	ATIONALE								
To introduce the students to the importance of maintenance in Automobile and similar machines and how to perform them.									
OBJECTIVE									

.

1. To study the various maintenance for reconditioning of vehicle parts

2. To train the structures in identifying the fault and rectification.

3. To impart the fundamental knowledge in evaluation and maintenance.

4. To know about the various methods of maintaining vehicles and their subsystems.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcomes	Correspondin g PO	Bloom's Taxonom y	KP	СР	CA	Assessment Methods
CO1	Learn the important of Maintenance in Engineering application	1,3	C1, C2, A3	1,2,3 ,4			Q, F
CO2	Understand the importance of Engine Maintenance	2,3	C2, C3, C4	3,4,5			Q, CS, F
CO3	Analyse all subsystem of automobile that requires maintenance	2,3	C2, C3, C4	3,4,5			Q, ASG, CS, F

CO4 Implement maintenance knowledge in real life to properly maintain automobile	1,3	C3, C4, C5, C6	4,5,6			Q, Pr, F
---	-----	-------------------	-------	--	--	----------

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- 1. Maintenance of records and schedules
- 2. Engine maintenance repair and overhauling
- 3. Chassis maintenance repair and overhauling
- 4. Electrical system maintenance servicing and repairs
- 5. Maintenance of subsystems and vehicle body

b. Detail Contents:

Maintenance of Records and Schedules:Importance of maintenance, preventive (scheduled) and breakdown (unscheduled) maintenance, requirements of maintenance, preparation of check lists. Inspection schedule, maintenance offecords, log sheets and other forms, safety precautions in maintenance.

Engine Maintenance – Repair and Overhauling:Dismantling of engine components and cleaning, cleaning methods, visual and dimensional inspections, minor and major reconditioning of various components, reconditioning methods, engine assembly, special tools used for maintenance overhauling, engine tune up.

Chassis Maintenance - Repair and Overhauling:Mechanical and automobile clutch and gear box, servicing and maintenance, maintenance servicing of propeller shaft and differential system. Maintenance servicing of suspension systems. Brake systems, types and servicing techniques. Steering systems, overhauling and maintenance. Wheel alignment, computerized alignment and wheel balancing.

Electrical System Maintenance - Servicing and Repairs:Testing methods for checking electrical components, checking battery, starter motor, charging systems, DC generator and alternator, ignitions system, lighting systems. Fault diagnosis and maintenance of modern electronic controls, checking and servicing of dashboard instruments.

Maintenance of Fuel System, Cooling Systems, Lubrication System and Vehicle Body:Servicing and maintenance of fuel system of different types of vehicles, calibration and tuning of engine for optimum fuel supply. Cooling systems, water pump, radiator, thermostat, anticorrosion and antifreeze additives. Lubrication maintenance, lubricating oil changing, greasing of parts. Vehicle body maintenance, minor and major repairs. Door locks and window glass actuating system maintenance.

CO-PO MAPPING

No	Course Outcome	PROGRAM OUTCOMES (PO)											
110.	Course outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Learn the important of Maintenance in Engineering application	3		3									
CO2	Understand the importance of Engine Maintenance		3	3									
CO3	Analyse all subsystem of automobile that requires maintenance		3	3									
CO4	Implement maintenance knowledge in real life to properly maintain automobile	3		3									

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATI	ON FOR CO-PC) MAPPING
Mapping	Level of Matching	Justification
CO1-PO1	3	Understand the fundamental knowledge maintenance and its application.
CO1-PO3	3	Apply maintenance theory to solve the ideal time for maintenance, inspection and repairing in automobile.
CO2-PO2	3	Identify engine components which need maintenance and how their application creates constant degradation.
СО2-РО3	3	Apply knowledge of maintenance to engine components for their proper functioning and solve issue regarding

improper maintenance of engine.							
СО3-РО2	3	Identify automobile subsystems and components which need maintenance and how they constantly degrade over time.					
СОЗ-РОЗ	3	Apply knowledge of maintenance to subsystems for their proper functioning as a whole system and solve issue regarding improper maintenance.					
CO4-PO1	3	Students able to understand fundamentals and importance of maintenance in all engineering systems.					
CO4-PO3	3	Students will come up with maintenance schedule for any system they able to work with and possible components that will require maintenance.					
TEACHING L	EARNING STR	RATEGY					
Teaching and L	earning Activitie	'S	Engagement (hours)				
Face-to-Face Le	earning						
			42				
Self-Directed Lo	earning		75				
Formal Assessm	nent		5.5				
Total			122.5				
TEACHING METHODOLOGY							
Class Lecture, Pop quiz, Case study, Laboratory visits, Assignments, Presentation							

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
Class 1-7	Maintenance of records and schedules	CT 01	
Class 8- 16	Engine maintenance – repair and overhauling	CT 02	
Class 17-24	Chassis maintenance - repair and overhauling	МТ	
Class 25-33	Electrical system maintenance - servicing		

	and repairs	S			
Class 34-42	Maintenan body	ace of subsystems and veh	icle	CT 03	
ASSESSMEN	T STRATE	GY	·		
	COs	Remarks			
		Class Assessmen	nt		
	3	Assignment	20		
	4	Presentation	20		
		Exam			
	1	Final Exam, CT, Mid	100		
	2	Final Exam, CT, Mid	100		
	3	Final Exam, CT	80		
	4	Final Exam, CT	80		
REFERENCE	BOOKS				
1. Jon Doke "F	leet Manage	ement", McGraw-Hill Co.	1984.		
2. James D Hal	derman - Ao	dvanced Engine Performa	nce Diagno	osis – PHI - 19	998.
3. Service Man	uals from D	ifferent Vehicle Manufact	urers		

3. Service Manuals from Different Vehicle Manufacturers

Spring/Fall Semester L-4, T-I or II

COURSE INF	FORMATION									
Course Code Course Title	ME 491 MEMS Devices- Design and Fabrication	Lecture Contact Hours Credit Hours	: 3.00 : 3.00							
PRE-REQUIS	SITE									
None										
CURRICULU	IM STRUCTURE									
Outcome Base	d Education (OBE)									
SYNOPSIS/R	ATIONALE									
An overview	of micro-electromechanica	l devices and technologies	s, and an introduction to							
design		and	modelling							
Standard mi micromachinin technologies, r	croelectronic fabrication g, elated fabrication methods,	technologies; bulk r and creating process flows.	nicromachining, surface bonding							

OBJECTIVE

1. Familiar with the fundamentals, fabrication process and applications of MEMS.

2.Understand the basic principles of MEMS sensors and actuators (mechanical, electrical, piezoresistive,

piezoelectric, thermal, microfluidic).

3.Understand the design considerations of basic MEMS sensors and actuators.

4.Design a basic MEMS sensor and actuator device, such as an inertia sensor, and a pressure sensor

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcomes	Correspondi ng PO	Bloom's Taxonomy	KP	СР	CA	Assessm ent Methods
CO1	To introduce the fundamental concept of MEMS & Microsystem and their relevance to current industry/scientific needs	1,2	C1, C3	3			Q, ASG, F
CO2	Applying basic sensing principles of chem./bio systems to develop novel sensors	2,3	C1	2,4	1		Q, ASG, F
CO3	To discuss the limitations and challenges in the design and fabrication of micro sensors, sensing modalities to build the desired microsystem	1,3	C1, C2	4	1,2		Q, F, CS
CO4	To introduce students to writing and evaluating research proposals enabling them to apply general micromachining principles to build novel devices.	3,4	C3, C4	2	1,2		Q, F, CS, Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- **1.** Introduction to design and modelling
- 2. Standard microelectronic fabrication technologies
- **3.** Introduction to lumped modelling of systems and transducers
- 4. An overview of system dynamics MEMS examples
- 5. Modelling dissipative processes, Fluids and Transport.

b. Detail Contents:

Introduction to design and modelling Standard microelectronic fabrication technologies; bulk micromachining, surface micromachining, bonding technologies, related fabrication methods, and creating process flows.

Mechanical, thermal, electrical, magnetic, optical, and chemical properties of materials Introduction to lumped modelling of systems and transducers; an overview of system dynamics MEMS examples, energy methods, the thermal energy domain; modelling dissipative processes, Fluids and Transport.

CO-PO MAPPING

No	Course Outcome	PROGRAM OUTCOMES (PO)											
1101		1	2	3	4	5	6	7	8	9	10	11	12
CO1	To introduce the fundamental concept of MEMS & Microsystem and their relevance to current industry/scientific needs	3	2										

CO2	Applying basic sensing principles of chem./bio systems to develop novel sensors		3		2				
CO3	To discuss the limitations and challenges in the design and fabrication of micro sensors, sensing modalities to build the desired microsystem	2	3						
CO4	To introduce students to writing and evaluating research proposals enabling them to apply general micromachining principles to build novel devices.			3	2				

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level of Matching	Justification
CO1-PO1	3	Student will practice design related problems
CO1-PO2	2	Application of equation will enable the students to analyse problems arise in various engineering problems
CO2-PO2	3	Student will practice design related problems
CO2-PO3	2	Application of equation will enable the students to analyse problems arise in various engineering problems

CO3-PO1	2	Application of equation will enable the students to analyse problems arise in various engineering problems							
CO3-PO2	3	Student will practice design related proble	ems						
CO4-PO3	3	Student will practice design related proble	ems						
CO4-PO4	CO4-PO42Application of equation will enable the students to analyse problems arise in various engineering problems								
TEACHING LEARNING STRATEGY									
Teaching and Lo	Engagement (hours)								
Face-to-Face Le	arning		42						
Self-Directed Le	earning		75						
Formal Assessm	nent		5.5						
Total			122.5						
TEACHING METHODOLOGY									
Class Lecture, P	'op quiz, Case stu	dy, Problem solving							

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
Class 1-9	Introduction to design and modelling Standard microelectronic fabrication technologies;	CT 01	
Class 10-15	bulk micromachining, surface micromachining, bonding technologies		
Class 16- 25	related fabrication methods, and creating process flows.	CT 02	
Class 26- 29	Mechanical, thermal, electrical, magnetic, optical, and chemical properties of materials		
Class 30-34	Introduction to lumped modelling of systems and transducers;	MT	
Class 35-36	an overview of system dynamics MEMS examples, energy methods	CT 03	
Class 37-42	the thermal energy domain; modeling dissipative processes, Fluids and Transport	CT 04	

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks			
	Class Assessmen	nt				
1	Assignment	20				
2	Assignment	20				
	Exam	Exam				
1	Final Exam, CT	80				
2	Final Exam, CT, MID	80				
3	Final Exam, CT	100				
4	Final Exam, CT, Mid	100				

REFERENCE BOOKS

Tai – Ran Hsu, "MEMS& Microsystems Design and Manufacturing", Tata McGrawhill Edition,
2006\Mohamed Gad-el-Hak,

2. "MEMS: Design and Fabrication (Mechanical Engineering)", CRC; 1 edition,2005Marc J.

Madou

3."Fundamentals of Microfabrication, the science of Miniaturization", CRC Press SecondEdition,

2002.

4. Sami Franssila, "Introduction to Microfabrication", John Wiley; 1 edition, 2004

5. John A. Pelesko, David H. Bernstein, "Modeling MEMS and NEMS", CRC; 1 edition, 2002

Spring/Fall Semester L-4, T- I or II

COURSE INF	ORMATION								
Course Code	ME 493	Lecture Contact Hours	3.00						
Course Title	Material Handling	Credit Hours	3.00						
PRE-REQUIS	SITE								
None									
CURRICULU	M STRUCTURE								
Outcome Based	d Education (OBE)								
SYNOPSIS/RATIONALE									
Importance and	d scope of material handling; Classifi	cation of materials - unit lo	ad and bulk						
loads; Analysis	s of material handling problems - syste	m concept, selection and class	ssification of						
conveying equ	ipment; Efficiency of material handlin	g systems; General theory o	of conveyors;						
Computer con	trolled material handling (AGV, ASF	RS etc); Description and dea	sign of belt,						
chain, flight, so	crew, pneumatic and hydraulic convey	ors; Operation and selection	of industrial						
truck loads. P	ackaging: packaging materials, layou	ut for packaging; Testing p	procedure of						
packages - vi	bration test, drop test; Performance	limit; Testing machines.	Storage and						
warehousing, S	orting, Automated warehousing								

•

OBJECTIVE

1. Understand and be able to complete the following charts with regard to a specific.

2. Product, assembly chart, route sheet, operations process chart, from-to chart, and activity

relationship chart.

3. Identify equipment requirements for a specific process.

4. Understand the benefit of an efficient material handling system.

LEAR	NING OUTCOMES & (GENERIC SK	KILLS				
No.	Course Outcome	Correspond ing PO	Bloom's Taxonomy	СР	CA	K P	Assessme nt Methods
CO1	Learn fundamental principles of material handling systems.	1	C1				CP,CA
CO2	Develop understanding of special concepts in material handling.	3	C3,C4				КР,СР
CO3	Learn analytical procedures for the study of different material handling equipment	1	C1,C2				СТ,КР
CO4	Learn fundamental principles of packaging.	6	C4,C6				KP

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R – Report; F – Final Exam)

COURSE CONTENT

Importance and scope of material handling; Classification of materials - unit load and bulk loads; Analysis of material handling problems - system concept, selection and classification of conveying equipment; Efficiency of material handling systems; General theory of conveyors; Computer controlled material handling (AGV, ASRS etc); Description and design of belt, chain, flight, screw, pneumatic and hydraulic conveyors; Operation and selection of industrial truck loads. Packaging: packaging materials, layout for packaging; Testing procedure of packages - vibration test, drop test; Performance limit; Testing machines. Storage and warehousing, Sorting, Automated warehousing

CO-PO MAPPING

No	Course Learning Outcome			Р	RO	GR	AM	OU	TCO1	ME	S (PO)	
No. CO1 D CO1 D CO2 S h CO3 C CO3 C CO4 C	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Learn fundamental principles of material handling systems.	3											
CO2	Develop understanding of special concepts in material handling.			3									
CO3	Learn analytical procedures for the study of different material handling equipment	3											
CO4	Learn fundamental principles of packaging.						3						

Justification for CO-PO mapping:

Mapping	Corresponding	Justifications
	Level of	
	matching	
CO1-PO1	3	Developing integral form of Material handling system will
		provide knowledge from physics and mathematics
CO2-PO3	3	Application of the system structure will enable the students
		to analyse problems arise in various engineering problems
CO3-PO1	3	Students will have the knowledge of basic research and
		development principles regarding the topics
CO4-PO6	3	Application of theories and their industrial approach

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	42
Self-Directed Learning	75
Formal Assessment	5.5
Total	122.5

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE SO	CHEDULE
Week-1	Importance and scope of material handling; Classification of materials - unit load and bulk loads;
Week-2	Analysis of material handling problems - system concept, selection and classification of conveying equipment;
Week-3	Efficiency of material handling systems;
Week-4	Description and design of belt, chain, flight, screw, pneumatic and hydraulic conveyors;
Week-5	Operation and selection of industrial truck loads.
Week-6	Testing procedure of packages - vibration test, drop test;
Week-7	Performance limit; T
Week-8	Testing machines.
Week-9	Storage and warehousing, Sorting,
Week-10	General theory of conveyors;
Week-11	Computer controlled material handling (AGV, ASRS etc);
Week-12	Automated warehousing.
Week-13	Packaging: packaging materials, layout for packaging;
Week-14	Overview

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
1	Assignment	20	
2	Assignment	20	
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	100	
4	Final Exam, MID	100	

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

1. Material Handling Systems Design – J. M. Apple.

2. MATERIAL HANDLING, Raymond A. Kulwiec, (1985), John Wiley, New Jersey.

3. FUNDAMENTALS OF PACKAGING TECHNOLOGY, KlalterSoroka, Richard Warrington, (1995)

Spring/Fall Semester L-4, T- I or II

COURS	SE INFORMATION									
Course	Code ME 495		Lectur	e Cont	act Ho	urs	3.00			
Course '	Title Mechatronics		Credit	Hours			3.00			
PRE-R	EQUISITE									
ME 321 - Fluid Mechanics I										
ME 361	- Instrumentation and Measurement									
CURRI	CULUM STRUCTURE									
Outcom	e Based Education (OBE)									
SYNOP	SIS/RATIONALE									
To intro	duce the students with the application of	Mechatronic	cs system in	ntrodu	ction, I	nput so	ensors			
&Contro	ol, Electrical actuating systems, Hydrauli	c system								
OBJEC	TIVE									
1. Unde	rstand key elements of Mechatronics syst	tem, represei	ntation into	block	diagra	m				
2. Unde	rstand principles of sensors, its characteri	istics, interfa	cing with D	DAQ n	nicroco	ontrolle	er			
3. Unde	rstand the concept of PLC system and	its ladder pi	rogramming	g, and	signifi	cance	of PLC			
systems	in industrial application									
4. To kn	ow about electrical actuation system									
LEARN	VING OUTCOMES & GENERIC SKI	LLS		1	1	1				
		a	Bloom's				Assess			
No.	Course Outcome	Correspo	Taxono	KP	CP	CA	ment			
		nding PO	my				Metho			
	Advanced knowledge of a broad	1.2								
	range of modelling methodologies	1,2					Q,1			
	and underlying Mechanical science									
CO1	commonly used in the development		C1,C3	3						
	and analysis of mechatronic									
	engineering systems.									
	Knowledge of fundamental design	1					O.CA.			
	issues relevant to mechatronic						KP			
	engineering, and an understanding of			22						
CO2	how to formulate and analyse design		C3,C5	2,3						
	solutions in various engineering			,4						
	contexts relevant to sensors and input									
	methods for the control system									
	Knowledge of basic research and	1,6					T,PR,			
	development principles and practices						ASG			
CO3	relevant to mainstream engineering		C5.C6	3,4						
200	industry related with electrical		22,00	,7						
	actuator and their functionality in case									
	of practical approach.		1	1	1	1				

	Apply systems engineering	1,12				Q,Pr,F
	perspective in designing mechatronic					
CO4	systems Investigate further		C5C6	24		
C04	evolvement of mechatronics in new		C3,C0	3,4		
	directions with the advancement of					
	constituent technologies					

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Introduction: Definition of Mechatronics, Mechatronics in manufacturing, Products, and Design. Comparison between Traditional and Mechatronics approach.

Input sensors & Controller: Review of fundamentals of electronics. Data conversion devices, sensors, micro sensors, transducers, signal processing devices, relays, contactors and timers. Microprocessors controllers and PLCs.

Electrical actuating systems: solid-state switches, solenoids valves, solenoid actuator, voice coil; DC motor control, AC motor control, motor controller, power supply. Single phase motor; 3-phase motor; induction motor; synchronous motor; stepper motors, piezoelectric actuator and sensor (characterization, operation, and fabrication).

Hydraulic systems: Intrinsic circuit its application and necessity, Flow control, pressure and direction control valves, actuators, and supporting elements, hydraulic power packs, hydraulic pumps, hydraulic motor, understanding of hydraulic circuits. Pneumatic System: Engineered air production, distribution and conditioning of compressed air, system components and graphic representations, Pneumatic actuators and valves, connectors.

No	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
INO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Advanced knowledge of a broad range of modelling methodologies, and underlying Mechanical science, commonly used in the development and analysis of mechatronic engineering systems.	3	3										
CO2	Knowledge of fundamental design issues relevant to mechatronic engineering, and an	3											

CO-PO MAPPING

	understanding of ho	w to													
	formulate and analys	se													
	design solutions in v	various													
	engineering contexts	8													
	relevant to sensors a	nd													
	input methods for th	e													
	control system														
	Knowledge of basic														
	research and develor	oment													
	principles and practi														
	relevant to mainstra	am													
CO3	angingering industry	aiii	2					3							
0.05	related with electric		2					5							
	actuator and their	ai													
	functionality in acco	of													
	nunctionality in case	01													
	A pply systems														-
	Appry systems	tivo in													
	designing perspect	uve m													
	designing mechatron	nc													
604	systems investigate	c	2											2	
CO4	further evolvement of	1C	3											3	
	mechatronics in new	1													
	directions with the														
	advancement of														
	constituent technolo	logies													
T (*6* /															
Justificat	ion for CO-PO mapp	oing:													
Justificati Mapping	on for CO-PO mapp Corresponding	bing:					Jus	stific	atio	15					<u> </u>
Justificati Mapping	ion for CO-PO mapp Corresponding Level of	bing:					Ju	stific	atio	15					
Justificat Mapping	ion for CO-PO mapp Corresponding Level of matching	bing:					Ju	stific	atio	15					
Justificati Mapping CO1-PO	ion for CO-PO mapp Corresponding Level of matching 1 3	Develo	oping	g inte	gral	form	Jus n of l	stific		ns nics	sys	stem	will pr	rovide	
Justificati Mapping CO1-PO	ion for CO-PO mapp Corresponding Level of matching 1 3	Develo knowle	oping	g inte from	egral 1 phy	form	Jus n of l	s tific Mech math	ation	ns nics tics	sys to l	stem v ouild	will pr up eng	ovide	ng
Justificati Mapping CO1-PO	ion for CO-PO mapp Corresponding Level of matching 1 3	Develo knowle	oping edge nenta	g inte from al equ	egral n phy uatio	form ysics ons &	Jus n of l and z app	stific Mech math blicat	ation natron nema ions.	nics tics	sys to l	stem v ouild	will pr up eng	ovide gineerin	ng
Justificati Mapping CO1-PO CO1-PO	ion for CO-PO mapp Corresponding Level of matching 1 3 2 3	Develo knowle fundan Applic	oping edge nenta	g inte from al equ	egral n phy uatio he sy	form ysics ons & yster	Jus n of l and z app m str	stific Mech math licat	natron nema ions. re wi	nics tics	sys to l	stem v ouild e the	will pr up eng studer	ovide gineerin	ng
Justificati Mapping CO1-PO CO1-PO	ion for CO-PO mapp Corresponding Level of matching 1 3 2 3	Develo knowle fundan Applic to anal	oping edge nenta cation	g inte from al equ n of t probl	egral n phy uatio he sy ems	forn ysics ons & yster arise	Jus n of l and z app n stru e in y	stific Mech math licat uctur vario	natron nema ions. re wi us en	nics tics Il en	sys to l abl	stem v ouild e the ng pr	will pr up eng studer	ovide gineerin nts	ng
Justificati Mapping CO1-PO CO1-PO CO2-PO	ion for CO-PO mapp Corresponding Level of matching 1 3 2 3 1 3	Develo knowle fundan Applic to anal Studen	oping edge nenta catior yse j uts w	g inte from al equ n of t probl ill ha	egral n phy uatio he sy ems	form ysics ons & yster arise he kn	Jus n of l and z app n stru e in v nowl	Mech math <u>licat</u> uctur vario edge	natron nema ions. re wi us en on v	nics tics Il en gine ario	sys to l abl	stem v ouild e the ng pr types	will pr up eng studer oblem of	ovide gineerin nts as	ng
Justificati Mapping CO1-PO CO1-PO CO2-PO	ion for CO-PO mapp Corresponding Level of matching 1 3 2 3 1 3	Develo knowle fundan Applic to anal Studen mecha	oping edge nenta atior yse j nts w troni	g inte from al equ n of t probl ill ha cs sy	egral n phy uatio he sy ems ive the	forn ysics ons & yster arisc he kn	Jus n of 1 and and app n strue e in y nowle	Mech math blicat uctur vario edge	ation natron nema ions. re wit us en on v	nics tics Il en gine ario	sys to l abl eeri us t	stem v ouild e the ng pr types	will pr up eng studer oblem of	ovide gineerin nts is	ng
Justificati Mapping CO1-PO CO2-PO CO3-PO	ion for CO-PO mapp Corresponding Level of matching 1 3 2 3 1 3 1 3	Develo knowle fundan Applic to anal Studen mecha	oping edge nenta catior yse j uts w troni troni	g inte from al equ n of t probl ill ha cs sy ill ha	egral n phy uatio he sy ems we th vstem we th	form ysics ons & yster arisc he kn he kn	Jus n of l and and app n strue e in v nowle	Mech math <u>licat</u> uctur ario edge	ation natron nema ions. re wii us en on v of b	nics tics Il en gine ario	sys to l abl eeri us	stem v ouild e the ng pr types earch	will pr up eng studer oblem of	ovide gineerin nts Is	ng
Justificati Mapping CO1-PO CO1-PO CO2-PO CO3-PO	ion for CO-PO mapp Corresponding Level of matching 1 3 2 3 1 3 1 3 1 3	Develo knowle fundan Applic to anal Studen mechai Studen develo	oping edge nenta atior yse j nts w troni nts w	g inte from al equ n of t probl ill ha cs sy ill ha nt pr	egral h phy uatio he sy ems ive the vstem incip	form ysics ons & yster arise he kn he kn he kn	Jus n of l and z app n strue in v nowle	Mech math dicat uctur vario edge edge	ation natron nema ions. re wil us en on v of b ces r	nics tics Il en gine ario asic elev	sys to l abl eeri us res	stem v ouild e the ng pr types earch	will pr up eng studer oblem of and ainstre	rovide gineerin nts ns	ng
Justificati Mapping CO1-PO CO1-PO CO2-PO CO3-PO	ion for CO-PO mapp Corresponding Level of matching 1 3 2 3 1 3 1 3	Develo knowle fundan Applic to anal Studen mecha Studen develo engine	oping edge nenta atior yse j nts w troni troni nts w pme	g inte from al equ n of t probl ill ha cs sy ill ha nt pr g ind	egral n phy uatio he sy ems ive th stem ive th incip ustry	form ysics ons & yster arisy he kn he kn he kn he kn	Jus n of l and and and p n strue nowle	stific Mech math blicat uctur vario edge edge practi	ation natron nema ions. ce with us en on v of b ces r	nics tics Il en gine ario asic elev	sys to l abl eeri us res ant	stem v build e the ng pr types earch to m	will pr up eng studer oblem of and ainstro	ovide gineerin nts ns eam	ng
Justificati Mapping CO1-PO CO1-PO CO2-PO CO3-PO	ion for CO-PO mapp Corresponding Level of matching 1 3 2 3 1 3 1 3 6 3	Develo knowle fundan Applic to anal Studen mecha Studen develo engine Studen	oping edge nenta catior lyse j troni ts w pme ering ering	g inte from al equ n of t probl ill ha cs sy ill ha nt pri g indu ill le	egral n phy uatio he sy ems we th vstem we th incip ustry arn v	form ysics ons & yster arisc he kn he kn he kn bles a 7 7 ario	Jus n of l and and and p nowle and p	stific Mech math licat uctur /ario edge edge oracti	ation natron nema ions. re wii us en on v of b ces r and p	nics tics Il en gine ario asic elev	sys to l abl eeri us res ant	stem v ouild e the ng pr types earch to m s used	will pr up eng studer oblem of and ainstro d in ac	ovide gineerin nts is eam	ng
Justificati Mapping CO1-PO CO1-PO CO2-PO CO3-PO CO3-PO CO4-PO	ion for CO-PO mapp Corresponding Level of matching 1 3 2 3 1 3 1 3 6 3 1 3	Develo knowle fundan Applic to anal Studen mecha Studen develo engine Studen Will le	oping edge nenta atior yse j ts w troni ts w pme ering ts w earn t	g inte from al equ n of t probl ill ha cs sy ill ha nt pri g indu ill lea to ap	gral h phy uatio he sy ems ive th stem incip ustry arn v ply s	form ysics ons & yster aris he kn he kn bles a / / /ario syste	Jus n of l and z app n stru e in v nowle and p us co ms e	stific Mech math licat uctur /ario edge edge oracti	ation natron nema ions. re wil us en on v of b ces r and p eerin	nics tics tics ario asic elev pract	sys to l abl eeri us res ant tice	stem v ouild e the ng pr types earch to m s used ective	will pr up eng studen oblem of and ainstro d in ac e in de	ovide gineerin nts s eam etuators esigning	ng
Justificati Mapping CO1-PO CO1-PO CO2-PO CO3-PO CO3-PO CO4-PO	ion for CO-PO mapp Corresponding Level of matching 1 3 2 3 1 3 1 3 6 3 1 3	Develo knowle fundan Applic to anal Studen mecha Studen develo engine Studen Will le mecha	oping edge nenta atior yse j troni troni troni eering ts w earn t troni	g inte from al equ n of t probl ill ha cs sy ill ha nt pri g indu ill lea to apj c con	egral n phy uatio he sy ems ve th vsten vsten incip ustry arn v ply s ntrol	form ysics ons & yster arise he kn he kn he kn bles a 7 7 ario syste syste	Jus n of l and and and p nowle nowle and p us co ms e	stific Mech math blicat uctur vario edge edge practi odes ngino	ation natron nema ions. re with us en on v of b ces r and p eerin	nics tics ll en ario asic elev pract	sys to l abl eeri us res ant tice	stem v ouild e the ng pr types earch to m s used ective	will pr up eng studer oblem of and ainstro d in ac e in de	ovide gineerin nts is eam eam ctuators esigning	
Justificati Mapping CO1-PO CO2-PO CO3-PO CO3-PO CO4-PO	ion for CO-PO mapp Corresponding Level of matching 1 3 2 3 1 3 6 3 1 3 2 3	Develo knowle fundan Applic to anal Studen mechai Studen develo engine Studen Will le mechai	oping edge nenta atior yse j ts w pme ering ts w earn t troni ts w	g inte from al equ n of t probl ill ha cs sy ill ha nt pri g indu ill lea to ap c con n of c	egral n phy uatio he sy ems we th ve th ve th incip ustry arn v ply s ntrol contr	form ysics ons & yster arise he kn he kn bles a 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Jus n of I and z app n strue e in v nowle and p ous co ms e cem r and	stific Mech math olicat uctur vario edge edge oracti odes ngino	ation natrom nema ions. re wil us en on v of b ces r and <u>p</u> eerin	nics tics tics ario asic elev pract g pe	sys to l abl eeri us res ant tice al a	stem v ouild e the ng pr types earch to m s used ective	will pr up eng studer oblem of and ainstro d in ac e in de	ovide gineerin nts is eam etuators esigning case of	ng
Justificati Mapping CO1-PO CO1-PO CO2-PO CO3-PO CO3-PO CO4-PO	ion for CO-PO mapp Corresponding Level of matching 1 3 2 3 1 3 1 3 1 3 2 3 1 3 2 3 1 3 2 3	Develo knowle fundan Applic to anal Studen mecha Studen develo engine Studen Will le mecha Applic use	oping edge nenta atior yse j nts w troni troni eering ts w earn t troni catior	g inte from al equ n of t probl ill ha cs sy ill ha nt pri g indu ill lea to apj c con n of c	egral n phy uatio he sy ems ive th stem ive th incip ustry arn v ply s ntrol contr	form ysics ons & yster arise he kn he kn bles a / / ario syste syste syste	Jus n of l and and e in v nowle and p us co ms e em r and	stific Mech math plicat uctur vario edge edge practi ngino their	ation natron nema ions. re with us en on v of b ces r and p eerin	nics tics tics ario asic elev pract	sys to l abl eeri us res ant tice rrsp al a	stem v ouild e the ng pr types earch to m s used ective	will pr up eng studer oblem of and ainstro d in ac e in de	ovide gineerin nts s eam etuators esigning case of	
Justificati Mapping CO1-PO CO1-PO CO2-PO CO3-PO CO3-PO CO4-PO	ion for CO-PO mapp Corresponding Level of matching 1 3 2 3 1 3 6 3 1 3 2 3	Develo knowle fundan Applic to anal Studen mecha Studen develo engine Studen Will le mecha Applic use	oping edge nenta atior yse j troni nts w pme ering ering ts w earn t troni atior	g inte from al equ n of t probl ill ha cs sy ill ha nt pri g indu ill lea to ap c con n of c	egral n phy uatio he sy ems we th ve th ve th incip ustry arn v ply s ntrol	form ysics ons & yster arisc he kn he kn bles a 7 7 ario syste syst syst	Jus n of l and and and p n strue e in v nowle and p us co ms e em r and	stific Mech math olicat uctur vario edge edge oracti odes ngino	ation natron nema ions. re wii us en on v of b ces r and <u>p</u> eerin	nics tics tics ll en gine asic elev pract g pe	sys to l abl eeri us t res ant tice al a	stem v ouild e the ng pr types earch to m s used ective	will pr up eng studer oblem of and ainstro d in ac e in de	ovide gineerin nts is eam etuators esigning case of	ng
Justificati Mapping CO1-PO CO1-PO CO2-PO CO3-PO CO4-PO CO4-PO TEACHI	ion for CO-PO mapp Corresponding Level of matching 1 3 2 3 1 3 1 3 1 3 2 3 1 3 2 3 1 3 2 3	Develo knowle fundan Applic to anal Studen mechai Studen develo engine Studen Will le mechai Applic use	oping edge nenta atior yse j nts w troni ts w pme ering ts w earn t troni catior	g inte from al equ n of t probl ill ha cs sy ill ha nt pri g indu ill lea to apj c con n of c	egral h phy uatio he sy ems ive th vstem incip ustry arn v ply s htrol	form ysics ons & yster arische kr he kr he kr bles a / / zario syste syst oller	Jus n of I and 2 app n strue in v nowle nowle and p us co ms e cem r and	stific Mech math plicat uctur vario edge edge practi odes ngino	ation natron nema ions. re wii us en on v of b ces r and p eerin	nics tics tics ll en gine ario asic elev pract g pe	sys to l abl eeri us res cant tice al a	stem v ouild e the ng pr types earch to m s used ective	will pr up eng studer oblem of and ainstro d in ac e in de ach in	rovide gineerin nts is eam etuators esigning case of	ıg
Justificati Mapping CO1-PO CO1-PO CO2-PO CO3-PO CO3-PO CO4-PO CO4-PO CO4-PO	ion for CO-PO mapp Corresponding Level of matching 1 3 2 3 1 3 6 3 1 3 6 3 1 3 2 3 NG LEARNING STI and Learning Activitie	Develo knowle fundan Applic to anal Studen mechai Studen develo engine Studen Will le mechai Applic use	oping edge nenta atior yse j ts w pme ering ering ts w earn t troni ats w atior	g inte from al equ n of t probl ill ha cs sy ill ha nt pri g indu ill lea to ap c con n of c	egral n phy uatio he sy ems we th ve th ve th incip ustry arn v ply s ntrol	form ysics ons & yster arisc he kn he kn bles a 7 7 7 ario syste syst roller	Jus n of l and and and n strue in v nowle and p ous co ms e cem r and	stific Mech math blicat uctur vario edge edge practi odes ngino their	ation natrom nema ions. re wii us en on v of b ces r and <u>r</u> eerin	nics tics tics ll en gine asic elev pract g pe	sys to l abl eeri us res ant tice al a	stem v ouild e the ng pr types earch to m s used ective approa	will pr up eng studer oblem of and ainstro d in ac e in de ach in	ovide gineerin nts s eam etuators esigning case of t (hours	ng g

	42
Self-Directed Learning	75
Formal Assessment	5.5
Total	122.5

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE	SCHEDULE	
Week	Topics	
1-2	Definition of Mechatronics, Mechatronics in manufacturing,	CT-1
	Products, and design. Comparison between Traditional and	
	Mechatronics approach, Block diagram, System model and	
	history, Practical example and traditional use of mechatronics	
3-4	Review of fundamentals of electronics. Data conversion	
	devices, sensors, micro sensors, transducers, signal processing	
	devices, relays, contactors and timers.	
5-6	Electrical actuating systems: solid-state switches, solenoids,	CT-2
	voice coil; electric motors; DC motors, AC motors, Single	
	phase motor; 3-phase motor; induction motor	
7-8	Synchronous motor; stepper motors. Piezoelectric actuator:	
	characterization, operation, and fabrication	
9-10	Definition of servo motor, difference between servo and	
	stepper motor, classification, construction, control drive or	
11.10	servo drive ,applications	
11-12	Pressure and direction control valves, actuators, and supporting	CT-3
	elements, hydraulic power packs and pumps. Design of	
	approximation of compressed air system components and	
	graphic representations, design of systems. And integrating	
	with controller	
13-14	Overall projection of industrial automation controller PLC	
13 17	SCADA.DC	
	,	
ASSESSM	IENT STRATEGY	

COs	Assessment Method	Remarks	
	Class Assessment		
1	Assignment	20	
2	Assignment	20	

		Exam				
	1	Final Exam, CT	80			
	2	Final Exam, CT, MID	80			
	3	Final Exam, CT	100			
	4	Final Exam, CT, Mid	100			
REFERENCE B	OOKS	5				
1. Mechatronis, E	electro	nics Control System in Me	chanical A	and Electrical	l Engineering – W.	
Botton, Publisher	– Pear	son Education.				
2. Mechatronics –	D Nec	csulescu.				

3. Mechatronics – N. P. Mahalik.

4. The Mechatronics Hand Book-Mechatronic Systems, Sensors And Actuators—Robert H. Bishop

Spring/Fall Semester L-4, T- I or II

COURSE INFORMATION									
Course Code	ME 497	Lecture Contact Hours	: 3.00						
Course Title	Textile Technology	Credit Hours	: 3.00						
PRE-REQUISITE									
None									
CURRICULU	JM STRUCTURE								
Outcome Base	d Education (OBE)								
SYNOPSIS/RATIONALE									
Textile Techno	ology plays a vital role in	the development of the di	iverse economy of Bangladesh.						
The syllabus	will enable learners to	develop skills related to	self-reliance, enterprising and						

Textile Technology plays a vital role in the development of the diverse economy of Bangladesh. The syllabus will enable learners to develop skills related to self-reliance, enterprising and sustainability in textile related aspects of the economy. It promotes an understanding of cultural diversity, moral and cultural values throughout human history. The needs of a society are therefore satisfied.

OBJECTIVE

1. To understand the importance of textiles

I EADNING OUTCOMES & CENEDIC SKILLS

- **2.** To know the basic principles of fibres and fabrics
- **3.** Learning to use manufacturing equipments and construction techniques to construct an artefact following health and safety procedures.

LLAI			212.5				
No.	Course Outcomes	Correspond ing PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Understand fibre forming polymer, essential and desirable properties of textile fibres and classification of textile fibres.	1	C1, C2	3			Q, ASG, F
CO2	Describe the manufacturing process of different man-made fibres.	2,5	C3	1,2	1		Q, ASG, F
CO3	Enunciate physical and chemical properties of natural and manmade fibres and their uses.	1,4	C5, C6	4	1		Q, F, CS
CO4	Demonstrate the identification of different natural and man-made fibres.	3,12	C4, C6	5,6	1,2		Q, F, CS

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

411

COURSE CONTENT

a. Main Contents:

- 1. Introduction
- 2. Yarn Manufacturing
- 3. Fabric Manufacturing
- 4. Garments Manufacturing

b. Detail Contents:

Introduction: Different terms and definition of textiles, Textile sector in Bangladesh, Textile Fibers& mention it's important properties, feature of textile fibre, Ginning, Lint & linters, Mixing and Blending . Yarn Manufacturing: Flow chart of different spinning processes (carded, combed, rotor), different terms related to cotton and jute spinning, Flow-chart for modern blow room line, Basic idea on cotton and Jute spinning machineries and their function, Batch & Batching, Emulsion & emulsion making process. Fabric Manufacturing: Different basic terms of weaving process, preparatory of weaving and its functional effects. Flow chart of weaving process, Basic operation of weaving. Classification of looms, motions of loom, difference between weaving and knitting, Definition and Flow process of knitting, Types of knitting machine, non-woven fabric formation. Garments Manufacturing: Chronological development of garments industry in the world. Nomenclature of different types of garments, Flow-chart of sample garment making. Flow-chart of garments manufacturing process, Types of pattern, objectives of pattern making. Objectives of pattern grading, marker making, spreading, cutting, sewing, and garments finishing. Marker efficiency and fundamental of Trimmings.

No.	Course Outcome	PROGRAM OUTCOMES (PO)											
110.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Understand fibre forming polymer, essential and desirable properties of textile fibres and classification of textile fibres.	3											

CO-PO MAPPING

CO2	Describe the manufacturing process of different man- made fibres.		3			3				
CO3	Enunciate physical and chemical properties of natural and manmade fibres and their uses.	3			2					
CO4	Demonstrate the identification of different natural and man-made fibres.			3						3

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level of Matching	Justification
CO1-PO1	3	Students should understand fibre forming polymer, essential and desirable properties of textile fibres and classification of textile fibres.
CO2-PO2	3	Students should know about the manufacturing process
CO2-PO5	3	Student will have the knowledge of different man-made fibres.
CO3-PO1	3	Student should enunciate physical and chemical properties of natural and manmade fibres
CO3-PO4	2	Students should gain the knowledge of using man-made fibres

CO4-PO3	3	Students will know the identification of different man-made fibres.							
CO4-PO12	3	Students will know the identification	on of different natural fibres.						
TEACHING	G LEARNING S	STRATEGY							
Teaching and	l Learning Activ	rities	Engagement (hours)						
Face-to-Face	Learning								
			42						
Self-Directed	l Learning	75							
Formal Asse	ssment	5.5							
Total			122.5						
TEACHING	5 METHODOL	OGY							
Class Lecture	e, Pop quiz, Cas	e study, Problem solving							
NIDSE SCH									
JUKSE SCH	EDULE								
Week		Торіс	СТ						
1-4	Introduction: D textiles, Textile Fibers& mention of textile fibre, and Blending.	Different terms and definition of e sector in Bangladesh, Textile on it's important properties, feature Ginning, Lint & linters, Mixing	CT 01						
5-7	Yarn Manufact spinning proce different terms								

	Flow-chart for modern blow room line, Basic idea on cotton and Jute spinning machineries and their function, Batch & Batching, Emulsion & emulsion making process.	
8-9	Fabric Manufacturing: Different basic terms of weaving process, preparatory of weaving and its functional effects. Flow chart of weaving process, Basic operation of weaving.	CT 02
10-12	Classification of looms, motions of loom, difference between weaving and knitting, Definition and Flow process of knitting, Types of knitting machine, non-woven fabric formation. Garments Manufacturing: Chronological development of garments industry in the world.	МТ
13	Nomenclature of different types of garments, Flow-chart of sample garment making. Flow-chart of garments manufacturing process,	CT 03
14	Types of pattern, objectives of pattern making. Objectives of pattern grading, marker making, spreading, cutting, sewing, and garments finishing. Marker efficiency and fundamental of Trimmings.	

ASSESSMENT STRATEGY

COs	Assessment Method	ssessment Method (100%)				
	Class Assessmer	nt				
1	Assignment	20				
2	Assignment	Assignment 20				
	Exam					
1	Final Exam, CT	80				
2	Final Exam, CT, MID	80				

	3	Final Exam, CT	100							
	4	Final Exam, CT, Mid	100							
REFERENCE BOO	KS									
1. Textile Terms and	Defini	tion by Melintyre, J.E.								
2. Dyeing and Chemical Technology of Textile Fibres by ER. Trotman										
3. Modern Techniques of Textile Dyeing, Bleaching & Finishing by S.M. Arora										
4. Textile Fibers, Dye	s & Pr	ocesses by Howard L. Need	lles							
5. Textiles: Fiber to F	abric b	y Corbman, Bernard P								
6. General Technolog	6. General Technology of Cotton Manufacturing (Mir Publisher) by PT. Bukayer									
7. General Textile Pro	ocessin	g by Abu sina Md. Ruknul	Quader							

Spring/Fall Semester L-4, T- I or II

COURSE IN	FORMATION										
Course Code	ME 499		Lecture Contact	Hours	: 3.00)					
Course Title	Weapon Engin	neering	Credit Hours		: 3.00)					
PRE-REQUISITE											
None											
CURRICUL	UM STRUCTUR	RE									
Outcome Bas	ed Education (OB	E)									
SYNOPSIS/	RATIONALE										
Present and	future trends	in weapon	technologies.	Ballistic	and	ammunition					

Present and future trends in weapon technologies; Ballistic and ammunition fundamentals; Effect of blast; fragmentation and shaped charged warheads; blast analysis and structural design; Kinetic energy of penetrations;

Dynamics of unguided weapons; fin and spin stabilization; Principle of missile flight and

propulsion; Missile guidance techniques. Technology of small arms; Cycle of operation; Classification of small arms; Method of operation; classification of firing mechanism; safety mechanism. Technology of ordinance and carriage assembly; build-up of a gun; barrel design and stresses on barrel; gun control; breech mechanism; elevating and traversing mechanism; recoil mechanism; gun dynamics; balancing mechanism

OBJECTIVE

- 1. The course is designed to offer equally a broad and in-depth coverage of technologies used in the design, development, test and evaluation of weapon systems and military vehicles.
- 2. Special attention will be given to recent advances in defence technology; and to educating students in the analysis and evaluation of systems against changes and developments in the threat.
- 3. The course also offers a critical depth to undertake engineering analysis or the evaluation of relevant sub systems.

No.	Course Outcomes	Correspo nding PO	Bloom's Taxonomy	KP	СР	CA	Assess ment Method s
CO1	Describe and identify the elements that make up a gun system	1	C1, C2	1			Q, ASG, F
CO2	Demonstrate an understanding of the current technology applied to gun barrels and breeches	6	C2, C4	7			Q, ASG, F
CO3	Undertake analysis of gun recoil systems, barrel vibration and other aspects of gun dynamics	2	C2, C3, C4	1			Q, F

LEARNING OUTCOMES & GENERIC SKILLS

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

Main Contents:

- a. Small arms
- b. Heavy arms

Detail Contents:

Definition related to ammunition, Types of small arms, Theory of small arms. Principles of small arms, Various mechanism of small arms – breach block mechanism, trigger mechanism, recoil mechanism, firing mechanism, sign of small arms – heating, muzzle attachment, explosives, optical sight, Future trends and developments of small arms & ammunition, Inspection of small arms, Maintenance of small arms, Cycle operation of small arms, Fire power characteristics of mortar, Principle of anti-tank weapon, Definition related to armament, Ordnance – gun mechanism, distribution of energy, barrel, Breach and recoil mechanism heavy weapons, Superstructure, Inspection

CO-PO MAPPING

No.	Course Outcome	PROGRAM OUTCOMES (PO)											
		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Understanding the elements that make up a gun system	3											
CO2	Demonstrate an understanding of the current technology applied to gun barrels and breeches						3						
CO3	Undertake analysis of gun recoil systems, barrel vibration and other aspects of gun dynamics		3										

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING								
Mapping	Level of Matching	Justification						
CO1-PO1	3	Knowledge of material properties will be needed						
CO2-PO6	3	Investigation on the current weapon technologies will be needed						
CO3-PO2	3	Analysis on the weapon mechanism will be needed						
TEACHING LEARNING STRATEGY								
Teaching and Learning ActivitiesEngagementt (hours)								
Face-to-Face Le	earning							
			42					
Self-Directed L	earning		75					
Formal Assessn	Formal Assessment 5.5							
Total 122.5								
TEACHING METHODOLOGY								
Class Lecture, Pop quiz, Case study, Problem solving								

COURSE SCHEDULE									
Week	Торіс	СТ	Remarks						
	Definition related to ammunition	CT 1							
Class $1-3$	Types of small arms								
	Theory of small arms								
	Principles of small arms	CT 2							
	Various mechanism of small arms - breach								
Class 4 – 16	block mechanism, trigger mechanism, recoil								
	mechanism, firing mechanism								
	Cycle operation of small arms								
Class 17 –	Design of small arms – heating, muzzle	MID							
23	attachment, explosives, optical sight								
Class 24 –	Inspection of small arms.	CT 3							
27	Maintenance of small arms								
Class 28 –	Definition related to armament	CT 4							

42	Ordnance – gun mechanism, distribution of	
	energy, barrel	
	Breach and recoil mechanism heavy weapons	
	Fire power characteristics of mortar	
	Principle of anti-tank weapon	
	Superstructure	
	Inspection	

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessmen		
1	Assignment	20	
2	Assignment	20	
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	100	
4	Final Exam, CT, Mid	100	

REFERENCE BOOKS

1.Charles E Balliesen, 'Principle of Firearms"

2.Brassey's Land Warfare "Guided Weapons", Into the 21st Century, 3rd Edition 3.Donald E Carlucci and Sidney S. Jacobson Ballistics "Theory and Design of Guns and Ammunition"

CHAPTER 6

COURSE OFFERED BY OTHER DEPARTMENTS TO STUDENTS OF ME DEPARTMENT

6.1 List of courses offered by other Departments to Students of N	ME Department
---	---------------

Course No	Course Name	Level	Dent	Contact	Credit	
Course 110	Course Maine	Term	Dept	Hours	Hours	
CHEM-101	Fundamentals of Chemistry	1-2	Sci &	3.00	3.00	
			Hum			
CHEM 102	CHEMISTRY Sessional	1-2	Sci &	3.00	1.50	
			Hum			
PHY 101	Waves and Oscillations, Optics and	1-1	Sci &	3.00	3.00	
	Modern Physics		Hum			
PHY 102	Physics Sessional	1-1	Sci &	3.00	1.50	
			Hum			
MATH 101	Differential and Integral Calculus	1-1	Sci &	3.00	3.00	
			Hum			
MATH 103	Differential equation and Matrix	1-2	Sci &	3.00	3.00	
			Hum			
MATH 201	Vector Analysis, Laplace	2-1	Sci &	3.00	3.00	
	Transformation and Coordinate		Hum			
N. (1. 015	Geometry	0.0	0.0	2.00	2.00	
Math 215	Complex Variable, Harmonic Function	2-2	Sci &	3.00	3.00	
LANC 102	and Fourier Analysis	1.0	Hum	2.00	1.50	
LANG 102	Communicative English-1	1-2	SCI &	3.00	1.50	
LANC 202	Communicative English II	2.1	Hum Sai e	2.00	1.50	
LANG 202	Communicative English II	2-1	SCI &	5.00	1.50	
CEDM 252		2.0		4.00	2.00	
GERM 352	Fundamentals of Research Methodology	3-2	SCI &	4.00	2.00	
CEDS 101	Dangladach Studiac	1 1	Hum Sai &	2.00	2.00	
GEDS 101	Dangiadesii Studies	1-1	SCI &	2.00	2.00	
CEE 305	Fundamentals of Economics	3.1	Sci &	2.00	2.00	
OEE 505	Tundamentals of Leonomies	5-1	Hum	2.00	2.00	
GES 307	Fundamentals of Sociology	3-2	Sci &	2.00	2.00	
020 207	i unumentalis er seereregy	52	Hum	2.00	2.00	
CSE 275	Computer Programming Language	2-1	CSE	3.00	3.00	
CSE 276	Computer Programming Language	2-1	CSE	3.00	1.50	
	Sessional					
EECE 159	Fundamentals of Electrical Engineering	1-1	EECE	3.00	3.00	
EECE 173	Electrical and Electronics Engineering	1-2	EECE	3.00	3.00	
EECE 174	Electrical and Electronics Engineering	1-2	EECE	3.00	1.50	
IPE 463	CAD/CAM	4-2	IPE	2.00	2.00	
IPE 464	CAD/CAM Simulation sessional	4-2	IPE	3.00	1.50	
GEPM 467	Project Management and Finance	4-1	Sci &	2.00	2.00	
			Hum			
GEEM 437	Engineering Ethics and Moral	4-1	Sci &	2.00	2.00	
	Philosophy		Hum			
GELM 275	Leadership and Management	2-2	IPE	2.00	2.00	

GESL 407	Environment, Sustainability and Law	4-2	Sci &	2.00	2.00
			Hum		

6.2 Proforma of Course Offered by Other Departments to Students of ME Department

Fall Semester L-1, T-II

COURSE INFORMATION										
Course	e Code CHEM 101		Lecture C	ontact	Hour	s :	3.00			
Course	e Title Fundamentals of C	Chemistry	Credit Ho	urs		:	3.00			
PRE-	REQUISITE									
N/A										
CURRICULUM STRUCTURE										
Outcome Based Education (OBE)										
SYNC	SYNOPSIS/RATIONALE									
To lea	rn the basic concepts of inorga	anic, organic and J	physical chen	nistry.						
OBJE	CTIVE									
4.	To define the different param	neter and concepts	of inorganic	chemi	stry.					
5.	To apply different chemical	theory to evaluate	structure of r	nolecu	les.					
6.	To explain the basic concept	s of physical chem	nistry.							
7.	To describe basic reaction m	echanism of selec	tive organic r	eaction	ns.					
TEAD	NINC OUTCOMES & CEN		-							
	Course Outcomes	Company ding	Dloom'a	VD	CD	CA	Assessment			
INO.	Course Outcomes	PO	Taxonomy	٨٢	CP	CA	Methods			
CO1	Be able to define the									
	different parameter and									
	concepts regarding atomic	1	C1	1			ТБ			
	structure, periodic table,	1	CI				1,1			
	chemical bonding, acids									
	and bases.									
CO2	Be able to apply different									
	theory on chemical			1.0						
	bonding and hybridization	1	C3, C5	1,2			T, F, ASG			
	to evaluate structure of									
<u>CO2</u>	molecules.									
COS	be able to classify									
	the mechanism of selective	1	C2	1,2			T, F, ASG			
	organic reactions									
CO4	Explain chemical									
001	equilibrium. thermo-						ASG .Mid			
	chemistry, chemical and	1	C2	1.2			Term Exam.			
	ionic equilibria, electro-	-		,—			F			
	chemical cells.									

(CP - Complex Problems, CA - Complex Activities, KP - Knowledge Profile, T - Test, PR - Project, Q - Quiz, ASG - Assignment, Pr - Presentation, R - Report, CS - Case study, F - Final Exam)

COURSE CONTENT

Atomic Structure: Concepts of atomic structure, Different atom models, Quantum theory and electronic configurations, Heisenberg's uncertainty principle

Periodic Table: Periodic classification of elements, Periodic properties of elements, Properties and uses of noble gases

Chemical Bonding: Types and properties, Lewis theory, VBT, MOT, Hybridization and shapes of molecules

Basic Concepts of Organic Chemistry: History, Physical and chemical properties, Classification **Hydrocarbon**: Chemistry of hydrocarbon, Nomenclature, Properties

Selective Organic Reactions: Oxidation-reduction, Substitution, Addition, Polymerization, Alkylation reactions

Acids-Bases/Buffer Solution: Different concepts of acids-bases, Buffer solution, Mechanism of buffer solution, Henderson-Hasselbalch equation, Water chemistry and pH of water

Solutions: Solutions and their classification, Unit expressing concentration, Colligative properties and dilute solutions, Raoult's law, Van't Hoff's law of osmotic pressure

Thermochemistry: Laws of thermochemistry, Enthalpy, Hess's law, Heat of formation, Kirchoff's equations, Heat of neutralization, Heat of reaction

Electrochemistry: Conductors & nonconductors, Difference between electrolytic and metallic conduction, Electrolytic conductance, Factors influencing the conductivity of electrolytes, Kohlrausch Law & conductometric titrations

Chemical Equilibria: Equilibrium law/constant, Kp and Kc, Homogeneous and heterogeneous equilibrium, Van't Hoff's reaction isotherm, Le Chatelier's principle

Phase Rule: Basic terms and phase rule derivation, Phase diagram of water and carbon dioxide

Chemical Kinetics: Order and rate of reaction, Pseudo and zero order reaction, Half-life, Determination and factors affecting the rate of a reaction, First order reaction, Second order reaction, Collision theory, Transition state theory.

CO-PO MAPPING															
No.	Course	Outcome			-	P	RO	GR/	AM	OL	JTC	OME	S (PO))	
	D 11	· · · · · · · · · · · · · · · · · · ·		1	2	3	4	5	6	7	8	9	10	11	12
CO1	parameter and concepts regarding atomic structure, periodic table, chemical bonding, acids and bases.			3											
CO2	Be able to apply different theory on chemical bonding and hybridization to evaluate structure of molecules.			3											
CO3	CO3 Be able to classify hydrocarbon and explain the mechanism of selective organic reactions.			3											
CO4	4 Explain chemical equilibrium, thermo-chemistry, chemical and ionic equilibria, electro-chemical			3											
(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)															
JUST	IFICATI	ON FOR CO-	PO MAPPINO	r J											
Mapp	ing	Level of Matching	Justification												
CO1-F	PO1	3	Students will Students will structure and	be lge knov	able t cl v ho	to ear w to	kno theo use	w a preti this	iboi cal s kn	ut tl kn	he p lowle ledge	ropei edge e.	ties of about	f parti parti	cles. cle's
CO2-F	PO 1	3	Students will	get d	lefin	ition	n of	che	mic	al b	ondi	ng ar	nd hybi	ridizat	ion.
CO3-F	PO 1	3	The students and explain the	will ne me	atta echa	in th nism	e k n of	now sele	led;	ge t ve o	o un rgan	derst ic rea	and hy	/droca	rbon
CO4-F	PO1	3	Students wil thermochemis cells etc.	l lea stry,	arn chei	the nica	pha 1 an	ise id io	dia onic	grai eq	n, c uilib	chem rium	ical ec , electi	quilibr rochen	ium, nical
TEAC	CHING L	EARNING ST	RATEGY									_			
Teachi	ing and L	earning Activit	ies									Enga	igemen	t (hou	rs)
Face-te	o-Face Le	earning											42	2	
Self-Directed Learning75															
Formal Assessment 5.5						5									
Total 122.5															
TEAC	CHING M	IETHODOLO	GY	acle:	ina										
Class Lecture, rop quiz, Case study, rioblem solving															
COURSE SCHEDULE															
-----------------	--	-------------	--	--	--	--	--	--	--	--					
Week 1	Atomic Structure	СТ													
Class 1	Concepts of atomic structure, Different atom models														
Class 2	Concepts of atomic structure, Different atom models														
Class 3	Quantum numbers, Electronic configuration														
Week 2	Atomic Structure/Periodic Table														
Class 4	Hydrogen spectral lines, Heisenberg's uncertainty principle														
Class 5	Classification of elements according to electronic configurations	CT-1													
Class 6	Periodic classification of elements														
Week 3	/eek 3 Periodic Table/Chemical Bonding class 7 Periodic properties of elements, Properties and uses of noble gases class 8 Alkali metals: Chemical properties and uses														
Class 7	ss 7Periodic properties of elements, Properties and uses of noble gasesss 8Alkali metals: Chemical properties and uses9Chemical properties (function of the properties)														
Class 8	Class 8 Alkali metals: Chemical properties and uses														
Class 9	s 9 Chemical bonding (types, properties, Lewis theory, VBT)														
Week 4	Chemical Bonding														
Class 10	Molecular orbital theory (MOT)														
Class 11	Molecular orbital theory (MOT)														
Class 12	Hybridization and shapes of molecules														
Week 5	Chemical Bonding/Organic Chemistry														
Class 13	Hybridization and shapes of molecules														
Class 14	Hybridization and shapes of molecules	CT^2													
Class 15	Basic concepts of organic chemistry: History, Physical & chemical	C1-2													
	properties, Classification														
Week 6	Week 6 Organic Chemistry														
Class 16	Class 16 Chemistry of hydrocarbon, Nomenclature, Properties														
Class 17	Class 17 Selective organic reactions: Oxidation-reduction, Substitution														
Class 18	Selective organic reactions: Addition, Polymerization, Alkylation														
Week 7	Acids-Bases														
Class 19	Different concepts of acids-bases														
Class 20	Buffer solution, Mechanism of buffer solution														
Class 21	Henderson-Hasselbalch equation														
Week 8	Acids-Bases/Solutions														
Class 22	Water chemistry and pH of water														
Class 23	Solutions and their classification, Unit expressing concentration														
Class 24	Effect of temperature and pressure on solubility, Validity and	CT-													
	limitations of Henry's law	3/Mid													
Week 9	Solutions/Thermochemistry	Term													
Class 25	Colligative properties and dilute solutions, Raoult's law, deviation	ICIM													
	from Raoult's law, Elevation of boiling point														
Class 26	Class 26Freezing point depression, Van't Hoff's law of osmotic pressure														
Class 27	ass 27 Thermochemistry: Laws of thermochemistry, Enthalpy														
Week 10	Thermochemistry/Electrochemistry														
Class 28	Hess's law, Kirchoff's equations														
Class 29	Heat of formation, Heat of neutralization, Heat of reaction														
Class 30	Electrolytic conduction and its mechanism														
Week 11	Electrochemistry														
Class 31	Faraday's law, Kohlrausch Law, Debye-Huckel-Onsagar theory	СТ-4													
Class 32	Conductrometric titrations	~1-7													

Class 33	Different types of cells							
Week 12	Chemical Equilibrium							
Class 34	Reversible reactions, Characteristics of chemical equilibrium, Law of							
	mass action, Equilibrium constant, Units of equilibrium constant							
Class 35	Relation between Kp & Kc, Van't Hoff's reaction isotherm							
Class 36	Free energy and its significance Heterogeneous equilibrium, Le							
	Chatelier's principle							
Week 13	Phase Rule/Chemical Kinetics							
Class 37	Phase Rule: Basic terms and phase rule derivation							
Class 38	Phase Diagram of water and carbon dioxide							
Class 39	Pseudo and zero order reaction, Half-life							
Week 14	Chemical Kinetics							
Class 40	Determination and factors affecting the rate of a reaction							
Class 41	First order reaction, Second order reaction							
Class 42	Collision theory, Transition state theory							

COs	Assessment Method	(100%)	Remarks
	Class Assessment	I	
1	Assignment	20	
2	Assignment	20	
	Exam		
2	Final Exam, CT	80	
3	Final Exam, CT, MID	80	
4	Final Exam, CT	100	

REFERENCE BOOKS

- 4. Modern Inorganic Chemistry S. Z. Haider
- 5. Concise Inorganic Chemistry J. D. Lee
- 6. A Textbook of Organic Chemistry Arun Bahl And B. S. Bahl
- 7. Organic Chemistry Morrison and Boyd
- 8. Principles of Physical Chemistry Haque and Nawab
- 9. Essentials of Physical Chemistry Bahl and Tuli

Fall Semester L-1, T-II

COURSE CONTENT

Quantitative chemical analysis in the field of inorganic and physical chemistry such as: Acid-base titration, Redox titration, Iodometric and Iodimetric titration, Complexometric titration.

CO-P	CO-PO MAPPING												
No	Course Outcome	PROGRAM OUTCOMES (PO)											
CO-PONo.IIIIICO1ISSICO2ICO3ICO3		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to describe the different parameters regarding acid and base neutralization, titration and quantitative analysis of metals etc. and others key words like primary standard substances, secondary standard substances, molarity, normality, indicator, equivalent weights and so on.	3											
CO2	Be able to explain the different phenomena and perform experimentation regarding iodimetric and iodometric method, complexometric titration etc.		3										
CO3	Be able to measure zinc, ferrous content in water sample by using various titrimetric methods.			3									

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATI	ON FOR CO-	PO MAPPING
Mapping	Level of	Justification
	Matching	
CO1-PO1	3	In order to understand different parameters regarding acid and base
		neutralization, titration and quantitative analysis of metals etc., the
		knowledge of natural science would be required.
CO2-PO2	3	In order to perform the experiments, the knowledge of engineering
		fundamentals is also required.
CO3-PO3	3	In order to perform the laboratory task, an ability to design complex
		process is required.

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	14
Practical	28

		Total 42					
Self-Direct	ed Learning						
Pre	paration of Lab Reports	10					
Pre	paration for the Lab Test	10					
Prep	aration for a presentation	5					
Prep	aration of Quiz	10					
Enga	agement in Group Projects	20					
Formal Ass	sessment						
Cor	ntinuous Assessment	14					
Fina	al Quiz	1					
Total		112					
TEACHIN	IG METHODOLOGY						
Lecture fol	lowed by practical experiments and discussion, Co-op	erative and Collaborative Method,					
Project Bas	ed Method						
COURSE	SCHEDULE						
Week-1	Introduction						
Week-2	Standardization of Sodium Hydroxide (NaOH) Solut	ion with Standard					
Week-3	Oxalic Acid dihydrate (C2H2O4.2H2 O) Solution.						
Week-4	Standardization of Hydrochloric Acid (HCl) Solution Hydroxide (NaOH) Solution.	n with Standard Sodium					
Week-5	Standardization of Hydrochloric Acid (HCl) Solution	with Standard Sodium					
	Carbonate (Na2 CO3) Solution.						
Week-6	Standardization of Sodium ThiosulphatePentahydrate with Standard Potassium Dichromate (K2Cr2O7) S	e (Na2S2O3.5H2 O) Solution olution.					
Week-7	Estimation of Copper (Cu) Content in a Copper Sulp	hatePentahydrate					
Week-8	(CuSO4 .5H2 O) (Blue Vitriol) Solutions by Iodo Sodium ThiosulphatePentahydrate (Na2S2O3 .5H2 (metric Method with Standard					
Week-9	Standardization of Potassium Permanganate (KMnO	4) Solution with Standard					
	Oxalic Acid dihydrate (C2 H2 O4 .2H2 O) Solution.	,					
Week-10	Determination of Ferrous (Fe) Content in a Ammoni Salt) [FeSO4.(NH4)2SO4.6H2O] Solution with Star (KMnO4)) Solution.	um Ferrous Sulphate (Mohr's ndard Potassium Permanganate					
Week-11	Determination of Zinc (Zn) Content in a Zinc SulphateHeptahydrate (ZnSO4.7H2O) Solution with Standard Di-Sodium EthyleneDiamineTetraAcetic acid (Na2-EDTA) (Na2-EDTA) Solution by using Eriochrome black T indicator.						
Week-12	Practice Lab						
Week-13	Lab Test						
Week-14	Quiz Test						

ASSESSMENT STRATEGY							
Comp	Components						
	Lab participation and		CO 1	P1			
	Lab participation and Report	15%	CO 2	P2,P3,P4,P5			
	Report		CO 3	P3,P4,P5			
Continuous Assessment	Labtast 1 Labtast 1		CO 1	P1			
(40%)	Lablest-1, Lablest-1, Lablest-2, Lablest-2	25%	CO 2	P2,P3,P4,P5			
	Lablest-2, Lablest-2		CO 3	P3,P4,P5			
	Presentation	20%	CO3	P3,P4,P5			
Lab (Quiz	30%	CO 2	P2,P3,P4,P5			
			CO 3	P3,P4,P5			
Total M	Marks	100%					
(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)							
TEXT AND REFERENCE I	BOOKS						
 G.H. Jeffery, J. Bassett, J. Mendham, R.C. Denney, Vogel's Textbook of Quantitative Chemical Analysis, 5th Edition, Longman Scientific & Technical, 1989 							
2. G. D. Christian., Analytical Chemistry, 6 th Edition, Wiley India Pvt. Limited, 2007							

3. A. Jabbar Mian and M. Mahbubul Haque-Practical Chemistry

Spring Semester L-1, T-I

COURSE INFORMATION									
Course Code	PHY 101	Lecture Contact Hours	: 3.00						
Course Title	Waves and Oscillations, Optics and	Credit Hours	: 3.00						
	Modern Physics								
PRE-REQUISITE									
N/A									
CURRICULU	M STRUCTURE								
Outcome Based Education (OBE)									
SYNOPSIS/RATIONALE									

This course is the basic physics in the field of Waves and Oscillations, Optics and Modern physics. The course will be emphasized the basic concepts, theories and solve quantitative problems which can be applicable in a wide spectrum of engineering disciplines.

OBJECTIVE											
1.	To define the different paran Modern physics.	neter and concep	ts of Waves	and	Oscil	lations	, Optics and				
2.	To explain the basic theories o	f Waves and Osci	llations, Optio	es and	l Mod	ern ph	ysics.				
3.	To solve numerical problem physics.	s regarding Wav	ves and Osc	illatio	ns, C	O ptics	and Modern				
LEAF	LEARNING OUTCOMES & GENERIC SKILLS										
No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods				
CO1	Be able to Define different basic parameters in the field of Waves and Oscillations, Optics and Modern physics such as periodic motion, simple harmonic motion, undamped oscillations, interference, diffraction, polarization and prism, photoelectric effect, Compton effect, matter wave, atomic model, radioactive decay, fusion, fission etc.	1	C1	1			T, F				
CO2	Be capable to Explain different basic theories in the field of Waves and Oscillations, Optics and Modern physics such as the wave motion for different systems along with energy, different formula for interference, diffraction, polarization special theory of relativity, Compton theory, nuclear transformation, and nuclear reaction etc.	1	C1	1			T, F, ASG				
CO3	Be skilled to Solve quantitative problems in the field of Waves and Oscillations, Optics and Modern physics such as energy of wave motion, wavelength, diffraction pattern, photon energy, Compton shift, nuclear binding energy etc.	1	C2	1,2			T, F, ASG				

COURSE CONTENT

Waves and Oscillations: Simple Harmonic Motion (SHM) and its properties, Differential equation of a SHM and its solution, total energy of a body executing SHM, average kinetic and potential energy of a body executing SHM, LC oscillatory circuit, Pendulum: simple, compound and torsional pendulum, spring-mass system, two body oscillation and reduced mass, damped harmonic motion and its different condition, forced oscillation and its different condition, resonance, equation of a progressive wave, differential equation of a progressive wave, energy density of wave motion, average kinetic and potential energy of a body executing SHM, Stationary wave

Optics: Lens, equivalent lens and power, defects of images and different aberrations, Interference of light, Young's double slit experiment, Interference in thin film and Newton's ring method, diffraction of light, diffraction by single slit, diffraction by double slits, Fraunhofer and Fresnel biprism, diffraction gratings, polarization of light, Brewster's law, Malus law, polarization by double refraction Nicole prism, optical activity and polarimeters, optical instruments, resolving power of optical instrument, Laser: spontaneous and stimulated emission

Modern physics: Galilean relativity & Reference frame, Special theory of relativity postulates, Galilean transformation, Lorentz Transformation, Length contraction, Time dilation, Velocity addition, relativity of mass, mass energy relation, Momentum energy relation, Photoelectric effect, Compton effect, de Broglie matter wave, Bohr atom model and explanation, atomic orbital and energy equation, classification of nucleus, nuclear binding energy, radioactivity, radioactive decay law, half-life, mean life, nuclear reaction, introduction to nuclear reactor.

CO-PO MAPPING													
No	Io. Course Outcome		PROGRAM OUTCOMES (PO)										
INO.	Course Outcome	PROGRAM OUTCOMES (PO) 1 2 3 4 5 6 7 8 9 10 11 efine different basic 1 2 3 4 5 6 7 8 9 10 11 efine different basic 1 2 3 4 5 6 7 8 9 10 11 efine different basic 1	12										
CO1	Be able to Define different basic parameters in the field of Waves and Oscillations, Optics and Modern physics such as periodic motion, simple harmonic motion, undamped oscillations, interference, diffraction, polarization and prism, photoelectric effect, Compton effect, matter wave, atomic model, radioactive decay, fusion, fission etc.	3											
CO2	Be capable to Explain different basic theories in the field of Waves and Oscillations, Optics and Modern physics such as the wave motion for different systems along with energy, different formula for interference, diffraction, polarization special theory of	3											

	relativity, Compton theory, nuclear transformation, and nuclear reaction etc.							
CO3	Be skilled to Solve quantitative problems in the field of Waves and Oscillations, Optics and Modern physics such as energy of wave motion, wavelength, diffraction pattern, relativistic energy, photon energy, Compton shift, nuclear binding energy etc.	3						

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING							
Mapping	Level of	Justification					
	Matching						
CO1-PO1	3	The conceptual knowledge of the natural sciences applicable to the engineering discipline					
CO2-PO1	3	The theory-based knowledge of the natural sciences applicable to the engineering discipline					
CO3-PO1	3	The numerical analysis based knowledge of applicable to the engineering	of the natural sciences				
TEACHING L	EARNING ST	RATEGY					
Teaching and Lo	earning Activit	ies	Engagement (hours)				
Face-to-Face Le	earning		42				
Self-Directed Le	75						
Formal Assessment5.5							
Total 122.5							

TEACHING METHODOLOGY

Class Lecture, Pop quiz, Case study, Problem solving

COURSE SCHEDULE						
Weeks	Topics	Remarks				
	Introductory class: Brief discussion on total syllabus, basic					
	requirements of the course, assessment of the course					
Week-1	Simple harmonic motion (SHM) and its differential equations,					
	graphical representation of SHM					
	Average K.E and total energy					
	Spring-mass system, electric oscillatory circuit	CT-1				
Week-2	Simple, compound and torsional pendulum					
	Combination of two SHM					
	Combination of two SHM					
Week-3	Two body oscillations, reduced mass					
	Damped oscillations and its differential equation					
	Displacement equation of damped oscillation, electric damped					
Week 1	oscillatory circuit					
WCCK-4	Forced oscillation and its differential equation					
	Displacement equation of forced oscillation, resonance					
	Plane progressive wave, energy density of wave					
Week-5	Stationary wave	CT-2				
	Lens and combination of lenses, power of lens					
	defects of images and different aberrations					
Week-6	defects of images and different aberrations					
	Interference of light, young's double slit experiment					
	Interference in Thin films, Newton's ring					
Week-7	Diffraction : Fresnel & Fraunhofer diffraction					
	Diffraction by single slit					
	Diffraction by double slit, Diffraction gratings					
Week-8	Polarization and Production and analysis of polarized light					
	Optics of crystals, Nicole prism					
	Brewster's and Malus law					
Week-9	Optical activity and polarimeter					
	Laser & its applications	МТ				
	Theory of relativity: Frame of Reference, Postulates of special	101 1				
	relativity, Galilean Transformation					
Week 10	Theory of relativity: Lorentz Transformations, Length Contraction					
WCCK-10	and Time dilation					
	Velocity addition, Relativistic mass: Concept of relativistic mass and					
	its expression					
	Theory of relativity: Mass and Energy equivalence equation and					
	concept of Massless particle and its expression. Related numerical					
Week-11	problems	-				
V CCK-11	Photoelectric Effect, photocurrent and work function, kinetic energy,					
	stopping potential	CT-3				
	photoelectric equation, characteristics of photoelectric effect					
	Compton effect: Definition, Compton wavelength shift, limitation					
Week-12	De Broglie Concept, Condition for wave and particle behavior, Bohr					
	atomic model					

	Expression for Bohr radii and orbital energy for hydrogen atom	
	Classification of Nucleus, nuclear binding energy	
Week-13	Radioactivity and its transformation, Radioactive Decay Law,	
	half- life, Mean life, nuclear reaction	
XX7 1 14	Concept of Fusion, Fission and nuclear chain reaction	
week-14	General idea on nuclear reactor and nuclear power plant	

COs	Assessment Method	(100%)	Remarks
	Class Assessment		
1	Assignment	20	
2	Assignment	20	
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	100	

REFERENCE BOOKS

- 1. Fundamentals of Physics : Halliday, Resnick and Walker
- 2. Physics for Scientists and Engineers: Serway and Jewett
- 3. Concept of Modern Physics: Arthur Beiser
- 4. University Physics with Modern Physics: Hugh D. Young and Roger A. Freedman
- 5. Modern Physics for Science and Engineering: Marshall L. Burns
- 6. Waves and Oscillations: Walter Fox Smith
- 7. The Physics of Vibrations and Waves: H. J. Pain
- 8. Waves and Oscillations : BrijLal and Subramannyam
- 9. Fundamental of Optics: Francis A. Jenkins and Harvey E.White
- 10. Introduction to Modern Optics: Grant R. Fowles
- 11. Fundamental Optical Design: Michael J. Kidger

Spring Semester L-1, T-I

COURSE INFORMATION									
Course Code	PHY 102	Lecture Contact Hours	: 3.00						
Course Title	Physics Sessional	Credit Hours	: 1.50						
PRE-REQUISITE									

N/A

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course is a laboratory course for the basic physics in the field of Waves and Oscillations, Optics, Mechanics, Electricity, Modern physics and Thermal physics. The course will be emphasized the fundamental experiments on different fields of physics which can be applicable in a wide spectrum of engineering disciplines. This laboratory course will enable students to understand basic physics practically as well as do work with team or individual.

OBJECTIVE

- 1. To develop basic physics knowledge practically
- 2. To practice use of basic scientific instrument.

LEAF	LEARNING OUTCOMES & GENERIC SKILLS								
No.	Course Outcomes	Corresponding	Bloom's	KP	CP	CA	Assessment		
		PO	Taxonomy				Methods		
CO1	Be able to Define the								
	different parameters								
	regarding Waves and								
	Oscillations, Optics,	1	C1	K1			Q		
	Mechanics, Electricity,								
	Modern physics and Thermal								
	physics etc.								
CO2	Be capable to Describe the								
	different phenomena								
	regarding Waves and								
	Oscillations, Optics,	1	C1	K1			T, F		
	Mechanics, Electricity,								
	Modern physics and Thermal								
	physics etc.								
CO3	Be skilled to Construct								
	Experiments by an individual								
	or by a group to determine								
	different phenomena		~				-		
	regarding Waves and	9	C2	K 2			F		
	Oscillations, Optics,								
	Mechanics, Electricity,								
	Modern physics and Thermal								
	physics etc.								
CO4	Be able to Prepare a report								
	for an experimental work.	10	C2	K2			R		

COURSE CONTENT

Quantitative measurement of different parameters in the field of Waves and Oscillations, Optics, Mechanics, Electricity, Modern physics and Thermal physics such as:

Specific resistance of materials, high resistance, Electrochemical equivalent (ECE) of copper, wavelength of light, focal length of lens, specific rotation of sugar, conductivity of a bad conductor, acceleration due to gravity, spring constant, the rigidity modulus, conservation of linear momentum, Young's modulus, Planck's constant, specific heat of a liquid.

CO-P	CO-PO MAPPING												
N.	Course Outroom	PROGRAM OUTCOMES (PO)											
INO.	. Course Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to Define the different												
	parameters regarding Waves and												
	Oscillations, Optics, Mechanics,	3											
	Electricity, Modern physics and												
	Thermal physics etc.												
CO2	Be capable to Describe the different												
	phenomena regarding Waves and												
	Oscillations, Optics, Mechanics,	3											
	Electricity, Modern physics and												
	Thermal physics etc.												
CO3	Be skilled to Construct Experiments												
	by an individual or by a group to												
	determine different phenomena												
	regarding Waves and Oscillations,									2			
	Optics, Mechanics, Electricity,												
	Modern physics and Thermal												
	physics etc.												
CO4	Be able to Prepare a report for an												
	experimental work.										1		
(Nume	rical method used for mapping which i	ndic	ates	3 as	hig	h. 2	as 1	ned	lium	and	1 as lo	w leve	l of
matchi	ng)		aces	e us		, _	ab 1			unu	1 45 10		1 01
	<i>C</i> /												

JUSTIFICATION FOR CO-PO MAPPING									
Mapping	Level of	Justification							
	Matching								
CO1-PO1	3	The conceptual knowledge of the natural sciences applicable to the							
		engineering discipline							
CO2-PO1	3	The descriptive knowledge of the natural sciences applicable to the							
		engineering discipline							
CO3-PO9	2	Able to do work or complete a task as an individual and as a team							

CO4-PO10 1 Capable to write a report on an experimental work							
TEACHING LEARNING STRATEGY							
Teaching and Learning Activities Engagement (hours							
Face-to-Face-t	ace Learning ecture		14				
Pr	actical		28				
			Total 42				
Self-Direc	cted Learning		10				
Pr Dr	eparation of Lab Rep	borts	10				
PI Dre	eparation for a preser	tation	10				
Pre	paration of Ouiz		10				
En	gagement in Group I	Projects	20				
Formal As	ssessment						
Co	ontinuous Assessmer	ıt	14				
Fi	nal Quiz		1				
Total			112				
TEACHI	NG METHODOLO	OGY					
Lecture fo	ollowed by practical	experiments and discussion, Co-op	perative and Collaborative	Method,			
Project Ba	ased Method						
COURSE	SCHEDULE			Dama			
Weeks		Topics		rks			
Week-1	Introductory class: the course evaluation	Brief discussion on total syllabus, on system of the course grouping	basic requirements of visit different section of				
	the laboratory, intro	oduction to different basic equipme	ent's				
	Determination of s	pecific resistance of materials of a	wire by using Meter				
Week-2	Bridge / Determina method	tion of focal length of a concave le	ens by auxiliary lens				
Week-3	Determination of a of specific heat of a	high resistance by the method of d liquid by the method of cooling	eflection/ Determination				
Week-4	Determination of E	CE of copper by using copper volt	ameter / Determination				
Weels 5	Of the Young's mo	ulus of bar by bending method	function quoting				
week-3	Determination of th	le wavelength of light by using this	fraction grating				
Week-6	Determination of th	e focal length of a plano-convex le	ens by Newton's ring				
Week-7	Determination of th	e specific rotation of sugar by por	alimeter				
Week-8	Determination of th	e conductivity of a bad conductor	by Lee's method /				
	Verification of the law of conservation of linear momentum						
Week-9	pendulum	le acceleration due to gravity by m	eans of compound				
Week-10	$\frac{1}{0}$ Determination of the spring constant and the rigidity modulus of a spiral spring						
	Determination of the Planck's constant using photoelectric effect						
Week-11	Determination of th	e Planck's constant using photoele	ectric effect				

Week-13	Viva & experimental exam								
Week-14	Quiz exam								
ASSESSMENT STRATEGY									
			<u> </u>						
Com	ponents	Grading	0	Blooms Laxonomy					
Continuo us Assessme	Class performanc e/ Assignmen t	10%	CO1	C1					
nt (40%)	Report Writing/ Assignmen t	30%	C01, CO4	C1, C2					
Final	Lab test	30%							
Exam	Viva	10%	CO1, CO2, CO3	C1, C2					
(60%)	Quiz	20%							
Tota	l Marks	100%							
(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)									

REFERENCE BOOKS

- 1. Practical Physics: G. L. Squires
- 2. Practical Physics: Dr Giasuddin and Md. Sahabuddin.
- 3. B.Sc. Practical Physics: C. L Arora
- 4. Practical Physics: S.L. Gupta and V. Kumar

Spring Semester L-1, T-I

COURSE INFORMATION									
Course Code	MATH 101	Lecture Contact Hours	3.00						
Course Title	Mathematics-1 (Differential and	Credit Hours	3.00						
	Integral Calculus)								
PRE-REQUIS	ITE								
N/A									
CURRICULU	M STRUCTURE								
Outcome Based	Education (OBE)								
SYNOPSIS/RATIONALE									
Purpose of this course is to introduce basic knowledge of Differential Calculus and use it in									
engineering study.									

OBJECTIVE

1. Be able to impart basic knowledge on differential and Integral Calculus to solve engineering problems and other applied problems.

2. Developing understanding some of the important aspects of rate of change, area, tangent, normal and volume.

3. Be expert in imparting in depth knowledge of functional analysis such as increasing, decreasing, maximum and minimum values of a function

LLAI	KNING OUTCOMES & GE	MERIC SKILLS	•				
No.	Course Outcome	Corresponding PO	Bloom's Taxonom y	СР	CA	K P	Assessme nt Methods
CO1	Define the limit, continuity and differentiability of functions, identify the rate of change of a function with respect to independent variables and describe the different techniques of evaluating indefinite and definite integrals.	1	C1,C2	1		3	T, F, ASG
CO2	Apply the concepts or techniques of differentiation and integration to solve the problems related to engineering study.	1	C3	1		3	T, Mid Term Exam, F
CO3	Calculate the length, area, volume, center of gravity and average value related to engineering study	1	C3	1		3	Mid Term Exam, F, ASG

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Differential Calculus: Introduction, Differential Calculus for Engineering, Function and Limit, Continuity and Differentiability, Successive Differentiation, Leibnittz's Theorem, Rolle's Theorem, Mean Value Theorem, Taylor's theorem, Expansion of Finite and Infinite forms, Lagrange's form of remainder, Cauchy's form of remainder, Expansion of functions differentiation and integration, Indeterminate form, Cartesian differentiation, Euler's theorem, Tangent, sub tangent and Normal, sub normal, Maxima and Minima, Curvature, Asymptotes, Partial differentiation.

Integral Calculus: Definition of Integration, Importance of Integration in Eng., Integration by substitution, Integration by parts, Standard integrals, Integration by successive reduction, Definite integrals and its use, Integration as a limit of sum, summing series, Walli's formula, Improper Integrals, beta and gamma function, multiple integral and its application, Area, volume of solid revolution, Area under a plain curve, Area of the region enclosed by two curves, Arc lengths of curves.

CO-PO MAPPING

No	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
110.	Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Define the limit, continuity and differentiability of functions, identify the rate of change of a function with respect to independent variables and describe the different techniques of evaluating indefinite and definite integrals	3											
CO2	Apply the concepts or techniques of differentiation and integration to solve the problems related to engineering study.	3											
CO3	Calculate the length, area, volume, center of Gravity and average value related to engineering study.	3											

Justification for CO-PO mapping: Justifications Mapping Corresponding Level of matching CO1- PO1 3 Knowledge of mathematics, science and engineering sciences h to be applied to describe the complete concept of differential a integral calculus. CO2- PO1 3 To apply proper and improper integral in the field of Engineerin study, knowledge of mathematics, science and engineering sciences are required. CO3- PO1 3 In order to calculate volume, average, center of gravity and area of any solid revolution object, the knowledge of Mathematics and engineering sciences are needed.

COURSE SCHEDULE

Week 1		
Class 1	Introduction to Differential Calculus for Engineering study, Limit of a function and its properties.	
Class 2	Basic limit theorems with proofs, Limit of infinity and infinite limit, Sandwich (Squeezing) theorem with problems.	CT 1
Class 3	Concept of Differentiation, definition, classification of discontinuity and solving problems	_
Week 2		

Class 4	Basic concept of Differentiability, definition, derivative of a function, differentiable function.	
Class 5	Differentiability – one sided derivatives (R.H.D and L.H.D), solving problems	
Class 6	Successive differentiation – Concept and problem solving	-
Week 3		-
Class 7	Leibnitz's theorem and its applications	
Class 8	Determination of $(y_n)_0$	
Class 9	Mean Value theorem, Taylor theorem	-
Week 4		
Class 10	Expansion of finite and infinite forms, Lagrange's and Cauchy's form of remainder.	CT 2
Class 11	Indeterminate forms – concept and problem solving,	
Class 12	L'Hospital's rules with application	
Week 5		1
Class 13	Partial differentiation - partial derivatives of a function of two variables and problems	-
Class 14	Partial differentiation - partial derivatives of a homogeneous function of two variables, Euler's theorem for two variables and problems	
Class 15	Partial differentiation - partial derivatives of a homogeneous function of several variables, Euler's theorem for several (three and m) variables and problem solving	
Week 6		-
Class 16	Tangents and Normals – Tangents and Normals in Cartesian, equation of tangent at the origin, equation of normal of functions of explicit and implicit forms, Angle between two intersection of two curves; problem solving	
Class 17	Tangents and Normals – Tangents and Normals in polar, Angle between two intersection of two curves; problem solving	-
Class 18	Tangents and Normals – Subtangent and subnormals in Cartesian and polar coordinate; problem solving	
Week 7		
Class 19	maxima and minima of functions of single variables – concept, Increasing and decreasing function, Concave up and down with problems	-
Class 20	Curvature]
Class 21	Asymptotes	
Week 8		Mid Torm
Class 22	Introduction to integral calculus	
Class 23	Standard integrals – concept of definite and indefinite integrals, applications.	
Class 24	Indefinite integrals – Method of substitution, Techniques of integration	1
Week 9		1
Class 25	Indefinite integrals – Integration by parts, Special types of integration, integration by partial fraction,	

Class 26	Integration by the method of successive reduction	
Class 27	Definite integrals – definite integrals with properties and problems	
Week 10		
Class 28	Definite integrals – Reduction formula, Walli's formula	
Class 29	Definite integrals – definite integral as the limit of the sum	
Class 30	Beta function – concept and problem solving	CT 4
Week 11		014
Class 31	Gamma function - concept and problem solving	
Class 32	Relation between beta and gamma function, Legendre duplication formula,	
	problems and applications	
Class 33	Multiple integrals – double integrals	
Week 12		
Class 34	Multiple integrals – triple integrals	
Class 35	Multiple integrals – successive integration for two and three variables	
Class 36	Area in Cartesian	
Week 13		
Class 37	Area in polar	
Class 38	Volume of solid revolution	
Class 39	Area under a plain curve in Cartesian and polar coordinates	
Week 14		
Class 40	Area of a region enclosed by two curves in Cartesian and polar coordinates	
Class 41	Arc lengths of curves in Cartesian coordinates	
Class 42	Arc lengths of curves in polar coordinates	

Comp	onents	Grading	СО	Blooms Taxonomy
	Class test/		CO1	C1, C2
Continuous	Assignment 1-3	20%	CO2 CO2	C3
(40%)	Class Participation 5%		CO3	C3
	Mid term	15%	CO2, CO3	C3
			CO1	CO1
Final	60%	CO2	CO2	
		CO3	CO3	
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Calculus (9th Edition) by Howard Anton (Author), Irl C. Bivens (Author), Stephen Davis.
- 2. Calculus: An Intuitive and Physical Approach By Morris Kline.

Fall Semester L-1, T-II

COURSE INF	ORMATION		
Course Code	MATH 103	Lecture Contact Hours	: 3.00
Course Title	Mathematics-2 (Differential	Credit Hours	: 3.00
	Equation and Matrix)		

PRE-REQUISITE

N/A

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

Purpose of this course is to introduce basic knowledge to identify and solve differential equations and concept of matrix.

OBJECTIVE

- 1. Be able to impart basic knowledge on ordinary and partial differential equations.
- 2. Developing understanding some of the important aspects of ordinary and partial differential equations.
- 3. Be able to provide knowledge on using concept of Differential equations and matrix in engineering problems and solve other applied problems.
- 4. Be expert in imparting in depth knowledge on inverse matrix.

LEAF	EARNING OUTCOMES & GENERIC SKILLS									
No.	Course Outcomes	Corresponding	Bloom's	KP	CP	CA	Assessment			
		PO	Taxonomy				Methods			
CO1	Define various types of differential equations and identify the classifications of partial differential equations.	1	C1, C2, C3	3	1		T,F,ASG			
CO2	Apply the knowledge and solve ordinary and partial differential equations.	1	C1, C2, C3	3	1		T, Mid Term Exam, F			

Apply the technique to obtain the inverse matrix that solve the system ofCO3linear equations.	1	C1, C2, C3	3	1		Mid Term Exam, F, ASG
---	---	---------------	---	---	--	-----------------------------

COURSE CONTENT

Differential Equations: Introduction & Formulation of DE in Engg, Degree and order of ODE, solution of first order but higher degree DE by various methods, solution of general DEs of second and higher order, Solution of Euler's homogeneous linear DEs, Solution of DEs by methods based on factorization, Frobenious methods, Bessel's functions, Legendre's polynomial, linear first order PDE, Non linear first order PDE, Standard form DEs of higher order and wave equation, particular solutions with boundary and initial condition, Non-linear PDE of order one, Charpit's method, Linear PDE with constant coefficients, Applications of DE

Matrix: Definition of Matrix, different types of matrices, Algebra of Matrices, Transpose and adjoint of a matrix and inverse matrix, rank and elementary transformation, solution of linear equation or System of Linear Equation, Matrix polynomials determination characteristic roots and vectors, characteristic subspace of matrix and Eigen values and Eigen Vectors, Cayley Hamilton

CO-P	CO-PO MAPPING												
No	Course Outcome	PROGRAM OUTCOMES (PO))						
INO.	PO MAPPING Course Outcome Define various types of differential equations and identify the classifications of partial differential equations. Apply the knowledge and solve ordinary and partial differential equations. Apply the technique to obtain the inverse matrix that solve the system of linear equations.	1	2	3	4	5	6	7	8	9	10	11	12
	Define various types of differential												
COL	equations and identify the	3											
COI	classifications of partial differential	3											
	equations.												
	Apply the knowledge and solve												
CO2	ordinary and partial differential	3											
	equations.												
	Apply the technique to obtain the												
CO3	inverse matrix that solve the system	3											
	of linear equations.												
theorem	n.of Gases and vapours												

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATI	ON FOR CO-PO	MAPPING
Mapping	Level of	Justification
	Matching	
CO1-PO1	3	The knowledge of mathematics, science and engineering sciences has to be applied to describe for the physical
		explanation of differential equations.
CO2-PO1	3	The application of differential equations need the knowledge of
		mathematics, science and engineering for describing

	exponential growth and decay, the population growth of							
CO3- PO1	3	In order to establish for finding the technique to obtain the						
		inverse matrix of mathematics and natural science is re	equired.					
TEACHING	LEARNING STRA	ATEGY						
Teaching and	Learning Activities	Engagement	(hours)					
Face-to-Face I	Learning	42						
Self-Directed	Learning	75						
Formal Assess	sment	5.5						
Total		122.	5					
TEACHING	METHODOLOGY	Y						
Class Lecture,	Pop quiz, Case stud	dy, Problem solving						
COURSE SC	HEDULE							
Week 1	1							
Class 1-3	Introduction & For	rmulation of DE in Engg, Degree and order of ODE						
Week 2								
Class 4-6	Solution of first or	der but higher degree DE by various methods	CT 1					
Week 3								
Class 7-9	Solution of general homogeneous line	l DEs of second and higher order, Solution of Euler's ar DEs						
Week 4								
Class 10-12	Solution of DEs by	y methods based on factorization, Frobenious methods,	CT 2					
XX7 1 5	besser's functions,	, Legendre's porynomiai						
Week 5	Lincon first and an L	DDE Nog lingen finst onder DDE	-					
	Linear first order F	DE, Noll lillear first older PDE	-					
Week 6 Class 16-18	Particular solutions order one: Charpit	s with boundary and initial condition, Non-linear PDE of 's method						
Week 7	1							
Class 19-21	Linear PDE with c	onstant coefficients, Applications of DE						
Week 8								
Class 22-24	Wave equations, P	articular solutions with boundary and initial conditions	Mid					
Week 9			Ter					
Class 25-27	Second order PDE elliptic, hyperbolic	and classifications to canonical (standard)- parabolic, solution by separation of variables.						
Week 10								
Class 28	Application of OD	and PDE in Eng study						
Class 29	Definition of Matr	ix, different types of matrices, Algebra of Matrices,	CT 3					

Class 30	Transpose and adjoint of a matrix and inverse matrix
Week 11	
Class 31-33	Solution of linear equation or System of Linear Equation
Week 12	
Class 34-36	Solution of linear equation using Inverse Matrix, Rank, Nullity and
	elementary transformation
Week 13	
Class 37-39	Dependent and independent of vectors, Matrix polynomials determination
	characteristic roots and vectors
Week 14	
Class 40-42	Characteristic subspace of matrix and Eigen values and Eigen Vectors,
	Cayley Hamilton theorem and its application. Finding inverse matrix using
	this theorem.

COs	Assessment Method	(100%)	Remarks
	Class Assessment	I.	
1	Assignment	20	
2	Assignment	20	
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	100	

REFERENCE BOOKS

1. Elementary Linear Algebra 10th Edition by Howard Anton (Author).

2. Ordinary and Partial Differential Equations By Dr. M.D. Raisinghania , S. Chand Publishing version) – Wiley

Spring Semester L-2, T-I

COURSE INFORMATION								
Course Code	MATH 201	Lecture Contact Hours	: 3.00					
Course Title	Mathematics-3 (Vector Analysis,	Credit Hours	: 3.00					
	Laplace Transformation and							
	Coordinate Geometry)							
PRE-REQUISITE								
MATH 101 and MATH 103								

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

Purpose of this course is to introduce basic knowledge to identify and solve vector mathematical problems, to demonstrate practical applications of Laplace Transform and analyze co-ordinate geometry.

OBJECTIVE

- 1. Be able to impart basic knowledge on ordinary and partial differential equations.
- 2. Developing understanding some of the important aspects of ordinary and partial differential equations.
- 3. Be able to provide knowledge on using concept of Differential equations and matrix in engineering problems and solve other applied problems.
- 4. Be expert in imparting in depth knowledge on inverse matrix.

LEARNING OUTCOMES & GENERIC SKILLS									
No.	Course Outcomes	Corresponding	Bloom's	KP	CP	CA	Assessment		
		PO	Taxonomy				Methods		
CO1	Know the physical explanation of different vector notation and Define Laplace transform, inverse Laplace transform, different types of matrices, and their properties.	1	C1 - C2	3			T,F,ASG		
CO2	Explain the characteristics of conics and familiarize with straight lines, pair of straight lines, circles, radical axis and center in 2D and 3D co-ordinate systems.	1	C2	3			T, Mid Term Exam, F		
CO3	Calculate length, volume and area of objects related to engineering study by using vector, Apply Laplace transform to ODE and PDEs and the knowledge of geometry in engineering study. Solve the problems of the pair of straight lines, circles, system of circles,	1	C3	3			Mid Term Exam, F, ASG		

parabola, ellipse etc.			

COURSE CONTENT

Vector Analysis: Definition of Vector and scalers & vector algebra, Scaler and vector products of two vectors and their geometrical interpretation, Triple products and multiple products, Linear dependence and independence of vectors, Differentiation of vectors, Gradient of scaler functions, Divergence and curl of point functions, physical significance of gradient, divergence and curl, Definition of line, surface and volume integral, Integration of Vectors, Green's theorem and its application, Stoke's theorem and its application, Gauss theorem and its application in Engineering.

Laplace Transform: Definition of LT and Application of LT for Engineering, LT of some elementary functions and properties of LT, Sufficient condition for existence of LT, Inverse LT, LT of derivatives, Unit step function, Periodic function, Some special theorems on LT, Partial fraction, Solution of DEs by LT, Heaviside expansion formula, Convolution theorem, Evaluation of improper integral, Application of LT.

Co-ordinate Geometry: Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates, changes of axes, pair of straight lines, general equation of second degree and reduction to its standard forms and properties, circles (tangents, normal, chord of contact, pole and polar), Equation of conics, homogeneous equations of second degree, angle between straight lines, pair of lines joining the origin to the point of intersection of two given curves, equations of parabola, ellipse in Cartesian and polar coordinates, system of circles (radical axes, coaxial circles, limiting points), Three dimensional co-ordinate system, direction cosines, projections, the plane (angle between two planes, parallel & perpendicular plane, distance of a point from a plane) and the straight line (coplanar lines, shortest distance between two given straight lines), standard equation of sphere, ellipsoid, hyperboloid straight lines, standard equation of coincides, sphere and ellipsoid.

SKILI	L MAPI	PING													
	PRO PRO				DGI	RAI	МС)UT	CO	MF	ES (P	0)			
No.		Course Outcome		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Learn the physical explanation of different vector notation and Define Laplace transform, inverse Laplace transform, different types of matrices, and their properties.			3											
CO2	Explain the characteristics of conics and familiarize with straight lines, pair of straight lines, circles, radical axis and center in 2D and 3D co-ordinate systems.			3											
CO3	Calculate length, volume and area of objects related to engineering study by using vector, Apply Laplace transform to ODE and PDEs and the knowledge of geometry in engineering study. Solve the problems of the pair of straight lines, circles, system of circles, parabola, ellipse etc.			3 as	hig	h, 2	as	mee	diur	n ai	nd 1	as	low	evel	
Justif	fication	for CO-PO mappi	ng:												
Mapp	ping	Corresponding Level of matching			Ju	stif	'ica	tior	IS	Ī					
CO1	- PO1	3	The knowledge of sciences has to be able to identify the notation, explain transform, 2D and 3	f n app e pl the D g	hath liec hysi e c geor	em to cal com	atic des ex plet y.	s, scri plar te	scie be t natio con	ence he on icep	e an ope of c ot a	nd rati liffe abo	engi on o erent ut I	neeri f bei vect Lapla	ng ng tor ice
CO2	- PO1	3	To explain the differentiation and integration of a vector value functions in Cartesian, cylindrical and spherical geometry an to solve the problems of the pair of straight lines, circle system of circles, parabola, ellipse etc. The concept of mathematics and engineering sciences is required.					ed nd es, of							
CO3	- PO1	3	In order to construct and calculate the area and volume of objects related to engineering study by using vector, solve the differential equations by Laplace transform is needed the concept of mathematics, physics and engineering sciences.					of the the							
TEACHING LEARNING STRATEGY															
Teach	ing and	Learning Activities	3						Eng	gag	eme	ent (hour	s)	
Face-	to-Face Lectur	Learning re									4	2			

Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Week 1		
Class 1-3	Definition of Vector and scalers & vector algebra, Scaler and vector products of two vectors and their geometrical interpretation	
Week 2		CT 1
Class 4	Triple products and multiple products, Linear dependence and independence of vectors, Differentiation of vectors	
Class 5	Gradient of scaler functions, Divergence and curl of point functions	
Class 6	Physical significance of gradient, divergence and curl	
Week 3		
Class 7-9	Definition of line, surface and volume integral, Integration of Vectors, Green's theorem and application	
Week 4		
Class 10	Gauss theorem and application in Engineering	CT 2
Class 11	Stoke's theorem and it's application.	
Class 12	Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates	
Week 5		
Class 13-15	Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates, changes of axes, pair of straight lines, general equation of second degree and reduction to its standard forms and properties	
Week 6		
Class 16-18	Circles (tangents, normal, chord of contact, pole and polar), Equation of conics, homogeneous equations of second degree, angle between straight lines, pair of lines joining the origin to the point of intersection of two given curves	
Week 7		

Class 19-21	Circles (tangents, normal, chord of contact, pole and polar), Equation of conics, homogeneous equations of second degree, angle between straight lines, pair of lines joining the origin to the point of intersection of two given curves	
Week 8		Mid
Class 22-24	Equations of parabola, ellipse in Cartesian and polar coordinates, system of circles (radical axes, coaxial circles, limiting points	Term
Week 9		
Class 25-24	Three dimensional co-ordinate system, direction cosines, projections, the plane (angle between two planes, parallel & perpendicular plane, distance of a point from a plane) and the straight line (coplanar lines, shortest distance between two given straight lines), standard equation of sphere, ellipsoid, hyperboloid	
Week 10		
Class 28	Three dimensional co-ordinate system, direction cosines, projections, the plane (angle between two planes, parallel & perpendicular plane, distance of a point from a plane) and the straight line (coplanar lines, shortest distance between two given straight lines), standard equation of sphere, ellipsoid, hyperboloid	CT 3
Class 29-30	Definition of LT and Application of LT for Engineering, LT of some elementary functions and properties of LT	
Week 11		
Class 31-33	Sufficient condition for existence of LT, LT of derivatives and it's application, LT of Integration with application, LT of sine and cosine integral	
Week 12		
Class 34	Unit step function and it's application	
Class 35	Periodic function with examples, LT of some special function.	
Class 36	Definition of inverse Laplace Transform and it's properties	
Week 13		
Class 37	Partial fraction and it's application in inverse Laplace Transform	
Class 38	Heaviside formula and it's application	
Class 39	Convoulution theorem, Evaluation of improper integral, Application of LT	
Week 14		
Class 40-42	Solve ODE s by Laplace transform	

COs	Assessment Method	(100%)	Remarks
	Class Assessment		
1	Assignment	20	
2	Assignment	20	
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	100	

REFERENCE BOOKS

- Vector Analysis, 2nd Edition 2nd Edition by Murray Spiegel, Seymour Lipschutz, Dennis Spellman
- 2. Schaum's Outline of Laplace Transforms by Murray R. Spiegel.
- 3. Engineering Mathematics, Volume Two 2 II: Containing Coordinate Geometry of Two Dimensions, Co-ordinate Geometry of Three Dimensions, Matrices.
- 4. Theory of Equations and Vector Calculus by K. Kandasamy, P.; Thilagavathy, K.; Gunavathy
- 5. A Text Book on Co-ordinate Geometry with Vector Analysis Rahman & Bhattacharjee.

Fall Semester L-2, T-II

COURSE INFORMATION

	010111111011						
Course Code	MATH 215	Lecture Contact Hours	: 3.00				
Course Title	Complex Variable, Harmonic Function	Function Credit Hours					
	and Fourier Analysis						
PRE-REQUISITE							
Math 101, Mat	th 103						
CURRICULUM STRUCTURE							
Outcome Based Education (OBE)							
SYNOPSIS/RATIONALE							

To teach the students the concepts, principles and working field of Complex Variable, Harmonic property of a function which is a special property and Fourier Analysis of different types of function. It is targeted to provide a basic foundation and applications of Fourier Series, Fourier Integrals, complex variable and to develop the concept of harmonic functions. Finally, this course is designed to demonstrate practical applications of Complex Variable, Harmonic Function and Fourier Transform.

OBJECTIVE

- 1. Be able to impart basic knowledge about Complex Variable, Harmonic Function and Fourier Analysis for different types of function.
- 2. Be able to familiarize the students with the characteristics of Complex number, Complex Integrals and Harmonic Function.
- 3. Be proficient to familiarize the students with the characteristics of Fourier Series, Fourier Integrals.
- 4. Be able to impart knowledge on Fourier Analysis, Complex Variable, Harmonic Function and thereby students able to solve engineering problems to give physical interpretation.

LEAKINING UUTUUVIES & GENEKIU SKILLS									
No.	Course Outcomes	Corresponding	Bloom's	KP	CP	CA	Assessment		
		PO	Taxonomy				Methods		
CO1	Recall the basic idea about Complex Variable, Harmonic Function and Fourier Analysis.	1	C1	1	1		Q, ASG, F		
CO2	Explain the complex functions by line integrals, Cauchy's integral formulae and Cauchy's residue theorem.	1	C2	2	1		Q, ASG, F		
CO3	Apply Fourier Transform to solve boundary value problems.	1	C3	2	1,3		Q, ASG, F		
CO4	Solve different coordinate system of engineering problems by Harmonic function.	1	C3	5	1		Q, ASG, F		

(CP - Complex Problems, CA - Complex Activities, KP - Knowledge Profile, T - Test, PR - Project, Q - Quiz, ASG - Assignment, Pr - Presentation, R - Report, CS - Case study, F - Final Exam)

COURSE CONTENT

Complex Variable: Complex number system, General functions of a complex variable, Limits and continuity of a function of complex variable and related theorems, Differentiation and the Cauchy-Riemann equations, Mapping by elementary functions, Line integral of a complex function, Cauchy's Integral formula, Complex function, Convergence and Uniform convergence, Liouville's theorem, Taylor's and Laurent's theorem, Singular residues, Cauchy's residue theorem.

Harmonic Function: Definitions of Harmonics function, Laplace's equation in Cartesian, Polar, cylindrical and spherical co-ordinates, Solution of these equations with applications, Gravitational potential due to a ring, Steady state temperature, Properties of harmonic functions, Potential inside and outside of a sphere.

Fourier Analysis: Real and Complex form of Fourier Series, Definition and expansion of a function of x in a Fourier Series, Physical application of Fourier Series, Finite Fourier Transform, Fourier Integral Inverse Fourier transform, Fourier transform and their uses in solving boundary value problems, Diffusion, wave, Laplace Equation.

CO-P	CO-PO MAPPING														
No	Course Outcome		PROGRAM OUTCOMES (PO)												
INU.			2	3	4	5	6	7	8	9	10	11	12		
	Recall the basic idea about														
CO1	Complex Variable, Harmonic	3													
	Function and Fourier Analysis.														
CO2	Explain the complex functions by line integrals, Cauchy's integral formulae and Cauchy's residue theorem.	3													
CO3	Apply Fourier Transform to solve boundary value problems.	3													
CO4	Solve different coordinate system of engineering problems by Harmonic function.	3													

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICA	JUSTIFICATION FOR CO-PO MAPPING												
Mapping	Level of	Justification											
	Matching												
CO1-PO1	2	The knowledge of mathematics has to be applied to Fourier											
	5	Analysis and Complex Variable in the field of engineering study.											
CO2-PO1		In order to explain the characteristics of various components of											
	3	EECE, the knowledge of mathematics regarding Complex											
		Variable is needed.											
CO3-PO1	2	In order to describe physical phenomena of different BVPs, using											
	3	the knowledge of mathematics and sciences is required.											
CO4-PO1	2	The concept of Mathematics and sciences is required to solve											
	5	engineering problems of different coordinate system.											

TEACHI	NG LEARNING STRATEGY								
Teaching and Learning ActivitiesEngagement (hou									
Face-to-Fa	ace Learning	42							
Self-Directed Learning 75									
Formal As	ssessment	5.5							
Total		122.5							
TEACHI	NG METHODOLOGY								
Class Lect	ture, Pop quiz, Case study, Problem solving								
COURSE	SCHEDULE								
Week 1	COMPLEX VARIABLE (MUST KNOW)								
Class-1	Complex number system								
Class-2	General functions of a complex variable								
Class-3	Graphical representation of complex number and complex vari	able	-						
Week 2	COMPLEX VARIABLE (MUST KNOW)		-						
Class-4	Roots of Complex number		_						
Class-5	Limits of a function of complex variable.		CT-1						
Class-6	Continuity of a function of complex variable and related theore	ems	-						
Week 3	COMPLEX VARIABLE (MUST KNOW)								
Class-7	Differentiation and the cauchy Riemann equations								
Class-8	Mapping by elementary functions								
Class-9	Line integral of a complex function		-						
Week 4	COMPLEX VARIABLE (MUST KNOW)								
Class-10	Green's theorem in complex form		-						
Class-11	Cauchy's Integral formula								
Class-12	Convergence and Uniform convergence								
Week 5	COMPLEX VARIABLE (MUST KNOW)		-						
Class-13	Liouville's theorem		-						
Class-14	Taylor's and Laurents theorem		CT-2						
Class-15	Singular residues. Cauchy's residue theorem								
Week 6	HARMONIC FUNCTION (MUST KNOW)								
Class-16	Definitions of Harmonics function		-						
Class-17	Properties of harmonic functions		-						
Class-18	Laplace's equation in cartesian co-ordinates								
Week 7	HARMONIC FUNCTION (MUST KNOW)								
Class-19	Laplace's equation in polar co-ordinates								
Class-20	Laplace's equation in cylindrical co-ordinates								
Class-21	Laplace's equation in spherical co-ordinates								
Week 8	HARMONIC FUNCTION (MUST KNOW)		-						
Class-22	Solution of these equations with applications								
Class-23	Gravitational potential due to a ring, Steady state temperature								
Class-24	s-24 Potential inside and outside of a sphere								
Week 9	FOURIER ANALYSIS (MUST KNOW)		1						
Class-25	Real and complex form of Fourier series		1						
Class-26	Definition and expansion of a function of x in a Fourier Series		1						
Class-27	Physical application of Fourier Seires		1						

Week 10	FOURIER ANALYSIS (MUST KNOW)	Mid
Class-28	Physical application of Fourier Seires	Term
Class-29	Finite Fourier sine Transform	
Class-30	Finite Fourier cosine Transform	
Week 11	FOURIER ANALYSIS (MUST KNOW)	
Class-31	Infinite Fourier Transform	
Class-32	Inverse Fourier Transform	
Class-33	Inverse Fourier Transform	
Week 12	FOURIER ANALYSIS (MUST KNOW)	
Class-34	Fourier Integral	
Class-35	Fourier Integral	
Class-36	Convolution Theorem for Fourier Transform	
Week 13	FOURIER ANALYSIS (MUST KNOW)	
Class-37	Parseval's identity for Fourier Transform	
Class-38	Fourier Transform and their uses in solving BVP	CT-4
Class-39	Fourier Transform and their uses in solving BVP (with physical interpretation)	
Week 14	FOURIER ANALYSIS (MUST KNOW)	
Class-40	Solution of Diffusion Equation by using Fourier Transform	
Class-41	Solution of Wave Equation by using Fourier Transform	
Class-42	Solution of Laplace Equation by using Fourier Transform	

			60	
Components		Grading	CO	Blooms Taxonomy
Continuo	Class Test/		CO1, CO2, CO3	C1, C2, C3
	Assignmen t 1-3	20%	CO4	C3
Assessme nt (40%)	Class Participati on	5%	CO4	C3
	Mid term	15%	CO2, CO3	C2,C3
			CO 1,CO2	C1,C2
Final	Exam	60%	CO 2, CO 3	C2,C3
			CO4	C3
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

1.	Complex Variables by - Murray R. Spiegel, Schaum's Outline Series.
2.	Theory and functions of complex variables, Shanti Narayan.
3.	Harmonic Function Theory by - Sheldon Axler.
4.	Fourier series, Schaum's outlines series, Murray R. Spiegel.

Spring Semester L-1, T-II

COURSE INFORMATION

Course Code	: LANG 102	Lecture Contact Hours	: 3.00
Course Title	: Communicative English I	Credit Hours	: 1.50
PRE-REQUIS	ITE		

N/A

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course has mainly been designed to improve speaking and oral communication skills of the students. The course includes instructions and experience in speech preparation and speech delivery within various real life situations, formal and informal. Emphasis will be given on various speeches, such as informative, persuasive and interactive. This course will help students progress in real life both personally and professionally. Students will be able to understand class lectures and can comfortably continue the Engineering course, and also to compete in the global job market and increase career skills.

OBJECTIVE

- 1. To develop the four basics skills of English language, i.e. listening, speaking, reading and writing.
- 2. To develop student's interpersonal skills engaging them in various group interactions and activities.
- 3. To improve student's pronunciation in order to improve their level of comprehensibility in both speaking and listening.
- 4. To give the students exposure to different types of texts in English in order to make them informed using different techniques of reading.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods				
CO1	Listen, understand and speak English quickly and smartly using the Technics learnt in the class.	1	C1, C2	1,3			Q, F				
CO2	Understand the techniques	1	C2, C3	1			Q, ASG, F				
CO3	Communicate effectively within the shortest possible time to present ideas and opinions	10	C2, C3	1			Q, ASG, F				
CO4	Develop competency in oral, written communication/presentatio n	10	C4, C5	1			Q, F, CS				

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

1.Speaking

2.Listening

3.Reading

4.Writing

b. Detail Contents

Speaking:

Introduction to Language: Introducing basic skills of language.

English for Science and Technology

Self-introduction and introducing others: How a speaker should introduce himself to any stranger / unknown person / a crowd.

Name, family background, education, experience, any special quality/interest, likings/disliking, etc.

Asking and answering questions, Expressing likings and disliking; (food, fashion etc.) Asking and giving directions

Discussing everyday routines and habits, Making requests /offers /invitations /excuses /apologies/complaints

Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event

Practicing storytelling, Narrating personal experiences/Anecdotes

Telephone conversations (role play in group or pair)

Situational talks / dialogues: Practicing different professional conversation (role play of doctorpatient conversation, teacher –student conversation)

Listening:

Listening and understanding: Listening, note taking and answering questions;

Students will listen to recorded text, note down important information and later on will answer to some questions

Difference between different accents: British and American accents;

Documentaries from BBC and CNN will be shown and students will try to understand

Listening to short conversations between two persons/more than two

Reading:

Reading techniques: scanning, skimming, predicting, inference;

Reading Techniques: analysis, summarizing and interpretation of texts

Writing:

Introductory discussion on writing, prewriting, drafting;

Topic sentence, paragraph development, paragraph structure, describing a person/scene/picture, narrating an event

Paragraph writing, Compare-contrast and cause- effect paragraph

CO-PO MAPPING

	0010													
No.	Course Outcome		PROGRAM OUTCOMES (PO)											
			2	3	4	5	6	7	8	9	10	11	12	
	CO1	Listen, understand and speak English quickly and smartly using the Technics learnt in the class.	3											
	CO2	Understand the techniques of academic reading and academic writing.	3											

CO3	Comr shorte ideas	municat est pos and op	te effective ssible tim- inions.	ly within the e to present									3					
CO4	Deve Com	evelop competency in oral, written pommunication/presentation.											3					
(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low leve													evel of					
matching)														_				
JUSTIFICATION FOR CO-FO MAPPING Monning Level of																		
Mapping Justification Matching Justification																		
CO1-PC	D1	3		Apply the kn solution of co	owledge	e of ngin	spe: eerii	akin 1g p	ig E rob	Engl lem	ish s.	fund	lame	nentals to the				
CO2-PC	D1	3		Apply the l fundamentals	knowled to the so	ge o olutio	of and of	reac f co	ling mpl	aı lex o	nd engi	writi neer	ing ing p	of English roblems.				
CO3-PO	D10	3	Communicate effectively about complex engineering active with the engineering community and with society at large developing their communication skill									ivities ge by						
CO4-PO10 3 Be able to comprehend and write effective reports, de documentation, make effective presentations and give and recelear instructions by developing their communication and write skill.									design eceive vriting									
TEACHING LEARNING STRATEGY																		
Teaching and Learning Activities Engagement (hou											ours)							
Face-to-	-Face I	Learnin	ıg										4	2				
Self-Dir	rected	Learnii	ng										7	5				
Formal	Assess	sment											5.	.5				
Total													12	2.5				
TEACH	HING	METH	IODOLO	GY														
Class L	ecture,	, Pop qı	uiz, Case st	tudy, Laborator	ry visits													
COUR	SE SC	HEDU	LE															
Week	C	lass]	lopi	С								СТ			
Week 1	Class	1-3	Introduction	on to Language	to Language: Introducing basic skills of language.													
			English fo	r Science and	Technolo	ogy												
Week 2	Class	4-6	Asking an	d answering qu	uestions,	Exp	ress	ing	liki	ngs	and	disli	iking	;				
			(food, fash	nion etc.) Askir	ng and g	ving	g dir	ecti	ons									
Week 3	Class	7-9	Discussing	g every day	/ rou	ines		and	ł	ha	abits	,	Ma	king				
			requests/o	ffers/invitation	s/excuse	s/ap	olog	jies/	con	npla	ints							
Week 4	Class	10-12	Describing	g personality, d	liscussin	g and	d ma	akin	g p	lans	(for	a ho	oliday	v or				
			an outing	to the cinema),	Describ	ing p	pictu	ires	/ ar	ıy ir	ncide	ent /	even	t				
Week 5	Class	13-15	Practicing	ticing storytelling, Narrating personal experiences/Anecdotes														
Week 6	Class 16-18	Telephone conversations (role play in group or pair)																
---------	-------------	---	-------------															
		Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –																
		student conversation)																
Week 7	Class 19-21	Listening and understanding: Listening, note taking and answering questions;																
		Students will listen to recorded text, note down important information																
		and later on will answer to some questions																
Week 8	Class 22-24	Difference between different accents: British and American accents; Documentaries from BBC and CNN will be shown and students will																
		try to understand																
Week 9	Class 25-27	Listening to short conversations between two persons/more than two	Mid Term															
Week 10	Class 28	Reading techniques: scanning, skimming, predicting, inference;																
	Class 29-30	Reading techniques: scanning, skimming, predicting, inference;																
Week 11	Class 31-33	Reading Techniques: analysis, summarizing and interpretation of																
		texts																
Week 12	Class 34-36	Introductory discussion on writing, prewriting, drafting;	CT 3															
Week 13	Class 37-39	Topic sentence, paragraph development, paragraph structure, describing a person/scene/picture, narrating an event																
Week 14	Class 40-42	Paragraph writing, Compare-contrast and cause- effect paragraph																
ASSES	SMENT STI	RATEGY																

COs	Assessment Method	Remarks				
	Class Assessmer					
1	Listening Test	15%				
2	Descriptive writing	25%				
3	Public Speaking	30%				
4	Presentation	30%				

REFERENCE BOOKS

1. Text and Ref Books:

a. Langan, J. (2005). College Writing Skills with Readings (6th Ed). McGraw-Hill Publication

b. Interactions 1 (Reading), John Langan, Latest edition, McGraw-Hill Publication

c. Jones, L. (1981). Functions of English. (Student's Book, 2nd Ed.) Melbourne, Australia: Cambridge University Press.

d. Dixon, R.J. (1987). Complete course in English. (Book 4). New Delhi, India: Prentice

Hall of India. (For book presentation)

- e. From Paragraph to Essay Maurice Imhoof and Herman Hudson
- f. Headway Series Advanced Level (2 parts with CDs): Oxford University Press Ltd.
- g. Speak like Churchill stand like Lincoln James C. Humes
- h. Cambridge IELTS Practice Book
- i. Selected Sample Reports and Selected Research Articles.

Spring Semester L-2, T-I

COURSE INFORMATION									
Course Code	LANG 202	Lecture Contact Hours	3.00						
Course Title	Credit Hours	1.50							
PRE-REQUISITE	C								
ENG 102									
CURRICULUM S	STRUCTURE								
Outcome Based Education (OBE)									

SYNOPSIS/RATIONALE

The English language course is designed for the students to develop their competence in communication skills for academic purposes especially in reading and writing. The approach will be communicative and interactive and will involve individual, pair and group work. Students will be exposed to different types of texts to develop efficient reading skill. Reading will also involve activities and discussions leading to effective writing. The course incorporates a wide range of reading texts to develop students' critical thinking which is one of the most essential elements required to write a good piece of academic writing. Emphasis is particularly put on the various forms of essay writing such as descriptive, narrative, cause-effect, compare-contrast, and argumentative. Upon completion of this course, students are expected to be able to communicate at various situations, participate in group activities and prepare formal speech for academic, professional and social purposes. This course also incorporates classroom instructions to provide guidelines on presentations and communication skills. In addition, the course emphasizes on providing constructive feedback on students' oral performances.

OBJECTIVE

1. To develop English language skills to communicate effectively and professionally.

2. To strengthen students' presentation skills.

3. To develop competency in academic reading and writing.

LEAR	LEARNING OUTCOMES & GENERIC SKILLS										
No.	Course Outcome	Corresponding	Bloom's	KP	CA	CP	Assessment				
		PO	Taxonom				Methods				
			У								
	Understand the techniques						F, ASG, Pr				
COL	of academic reading and	1	C^{2}								
COI	become acquainted with		C2								
	technical vocabularies										
	Understand the techniques	1					F, ASG, Pr				
CO2	of effective academic		C2								
	writing such as research										

	article/repor	t writing										
	Communicate within the second se	te effectively ne shortest	10				F, ASG, Pr					
CO3	possible tin any report	ne to present and research	o present research									
	Analyze a	any problem 10 F. ASG. Pr										
	critically,	analyze and	10				1,1100,11					
CO4	interpret	data and		C3								
	synthesize i	nformation to										
	provide value	d conclusions										
(CP- 0	Complex Prob	lems, CA-Comj Assignment: Pr	olex Activities, I – Presentation: I	KP-Knowled R - Report: F	ge Profi – Final	ile, T – T Exam)	est ; PR – Project					
COU	RSE CONTE	NT	1100011011011,1		1 mu	<u> </u>						
Mair	Content	Detail Content	s									
		Reading Comp	rehension: Pract	tice using dif	ferent t	echnique	2S					
		Academic read	ling: comprehen	sion from de	partmer	ntal or su	bject related					
		passages										
]	Reading											
	-											
		Vocabulary for	r Engineers (son	ne common H	Enginee	ring term	s for both general					
		and dept specif	fic)		U	0						
		Reading subject	et specific text to	o develop vo	cabular	y						
		Writing semi-f	ormal, Formal/o	official letters	s, Offici	al E-mai						
		Applying for a	JOD: Writing Co	over Letter and	technic	iculum v	itae					
		editing, proofr	eading;	incipies and	teening	lucs, out	ining, revising,					
	Writing	Narrative and	descriptive writi	ng: comparis	on-con	trast and	cause – effect,					
		argumentative	and opinion exp	pression, assi	gnment	writing;						
		Analyzing and	describing grap	hs or charts	· ·							
		Practicing anal	ytical and argun	nentative wri	ting							
		Public Speakir	g: Basic elemen	ts and qualit	ies of a	good pu	blic speaker					
		Set Speech and	l Extempore Spe	ech: How to	get rea	dy for an	y speech – set or					
S	Speaking	extempore.	, , :	TT (1	1 0		, , ·					
	· · · · · · · · · · · · · · · · · · ·	Individual / Group presentation: How to be ready for presentation, prepare script for good speech, preparing power point slides, etc. Selected										
		books/Selected stories for presentation.										
		Listening to lo	ng lecture on so	me topics								
T	istening	Listening and	understanding sp	peeches/lectu	res of d	lifferent a	accent					
	<i>o</i>											
1		1										

CO-PO	CO-PO MAPPING														
											ITC			\mathbf{a}	
No.		Course Learning C	utcome	1	2	P		GRA	AM		JTC		ES(PO)	J)	12
	Und	erstand the tecl	niques of	1	Z	3	4	Э	0	/	8	9	10	11	12
~ ~ .	acad	lemic reading a	nd become	_											
CO1	O1 acquainted with		technical	3											
	voca	abularies													
	Und	lerstand the tecl	nniques of												
CO2	effe	ctive academic wri	ting such as	3											
	rese	arch article/report	writing												
	Con	nmunicate effectiv	vely within												
CO3	nres	snoriest possible	e une to										3		
	wor	k	iu researen												
	Ana	lyze any problen	n critically,												
	anal	yze and interpre	t data and												
CO4	synt	hesize information	to provide										3		
	vali	d conclusions													
Justific	ation	for CO-PO mapp	oing:												
Mappir	Manning Corresponding Justifications														
	8	Level of													
		matching													
CO1-PO	D1	3	By understa	indi	ng te	echn	iqu	es o	of a	cad	emi	c rea	ading	studer	nts will
			be able to	app	ly k	cnow	vled	ge	of	ma	then	natic	s, nat	ural s	cience,
CO2 D(2	2	engineering Du underste	to t	ne so	oluti	$\frac{\text{on } \alpha}{\alpha}$		om <u>p</u>	olex odex	eng	inee	ring p	roblen	ns will be
CO2-FC)2	5	able to an	pply knowledge of mathematics, natural science,											
			engineering	to t	he so	oluti	on (of c	om	blex	eng	inee	ring p	roblen	ns
CO3-PC	D10	3	Students wi	ill b	e at	ole t	o C	Com	ımu	nica	ate e	effec	tively	on co	omplex
			engineering	eering activities with the engineering community and with								nd with			
			society at l	arge	e, su	ich a	as t	pein	ig a	ble	to	com	prehe	nd and	d write
			effective re	epor	ts a	ind	des	1gn	do	ocur	nent	ation	n, ma	ike et	fective
	210	3	Students w	is, ai ill b	iu gi e ab	$\frac{1}{2}$		Tece	mu	nice	ate e		tively		ompley
04-10	510	5	engineering	acti	vitie	es w	ith	the	eng	vine	eerin	g co	mmu	nity ar	nd with
			society at 1	arge	, su	ch a	as t	bein	ig a	ble	to	com	prehe	nd and	d write
			effective re	epor	ts a	nd	des	ign	dd	ocur	nent	ation	n, ma	ake ef	fective
			presentation	is, ai	nd gi	ive a	ind	rece	eive	cle	ar ir	istru	ctions		
TEACH	HINC	LEARNING ST	RATEGY									•			
Teachi	ing ar	nd Learning Activit	ies									I	Engag	ement	(hours)
Face-to-Face Learning 42						12		_							
Self-Directed Learning 75															
Forma	l Ass	essment										4	5.5		
Total	Total 122.5														

TEACHING METHODOLOGY

This course is mostly activity based. Students will often be engaged in interactive discussion. The tasks and activities include pair work, group work, brainstorming, guesswork, describing picture/graph/diagrams, word puzzle, making jokes, storytelling, role play, responding to reading, writing and listening texts.

COURSE SCHEDULE

Week	Class	Торіс	СТ
Week 1	Class 1-3	Reading Comprehension: Practice using different techniques	
Week 2	Class 4-6	Academic reading: comprehension from departmental or subject related passages	
Week -3	Class 7-9	Vocabulary for Engineers (some common Engineering terms for both general and dept specific), Reading subject specific text to develop vocabulary	
Week -4	Class 10-13	Writing semi-formal, Formal/official letters, Official E-mai1	
Week -5	Class 13-15	Applying for a job: Writing Cover Letter and Curriculum Vitae	
Week -6	Class 16-18	Essay writing: writing steps, principles and techniques, outlining revising, editing, proofreading;	
Week -7	Class 19-21	Narrative and descriptive writing: comparison-contrast and cause — effect, argumentative and opinion expression, assignment writing	
Week -8	Class 22-24	Analyzing and describing graphs or charts	

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessmen		
1	Testing vocabulary level	20%	
2	Argumentative/analytical	25%	
	writing		
3	Individual Presentation	25%	
4	Group Presentation	30%	
	EXAM		

REFERENCE BOOKS

1. Jones, L. (1981). Functions of English. (Student's Book, 2nd Ed.) Melbourne, Australia: Cambridge University Press.

2. Dixon, R.J. (1987). Complete course in English. (Book 4). New Delhi, India: Prentice Hall of India. (For book presentation)

- 3. Langan, J. (2005). College Writing Skills with Readings (6th Ed). McGraw-Hill Publication
- 4. Interactions 1 (Reading), John Langan, Latest edition, McGraw-Hill Publication
- 5. Headway Series Advanced Level (2 parts with CDs): Oxford University Press Ltd.

6. Cambridge IELTS Practice Book

Fall S тати

		Fail Semester I	, 1-11		Fall Semester L-3, T-II									
COU	RSE INFORMATION						-							
Course Course	e Code e Title : GERM 352 : Fundamentals of Methodology	Research	Lecture C Credit Ho	ontac	t Hour	S	: 4.00 : 2.00							
PRE-	REOUISITE													
N/A														
CURRICULUM STRUCTURE														
Outcome Based Education (OBE)														
5 INUTSIS/KAIIUNALE The Fundamentals of Descarab Methodology is a hands on course designed to import education in														
the for UG st framey manag would choosi discus OBJE The p and to are: 1. 2. 3. 4.	 The Fundamentals of Research Methodology is a hands-on course designed to impart education in the foundational methods and techniques of academic research in Science and Engineering context. UG students would examine and be practically exposed to the main components of a research framework i.e., problem definition, research design, data collection, ethical issues in research, time management, report writing, and presentation. Once equipped with this knowledge, participants would be well-placed to conduct disciplined research under supervision in an area of their choosing. In addition to their application in an academic setting, many of the methodologies discussed in this course would be similar to those deployed in professional research environments OBJECTIVE The primary objective of this course is to develop a research orientation among the UG students and to acquaint them with fundamentals of research methods. Some other objectives of the course are: To evaluate/review related extant literature, form a variety of sources, pertinent to the research objectives/questions. To expose students to various research methodologies (design), relevant to the research problem needing to be addressed. To explain and justify how researchers will collect and analyze research data. 													
	considerations in the field of	research methodol	ogy.											
LEAF	RNING OUTCOMES & GEN	ERIC SKILLS	D1 ·											
No.	Course Outcome	Corresponding PO	Bloom's Taxonom y	СР	CA	KP	Assessment Methods							
CO1	Understand the research fundamentals and formulate problem statement and research questions/objectives.	2	C2	-			ASG, Q							
CO2	questions/objectives.Image: Construct of the systemFormulate and compose a research proposal considering researchImage: Construct of the system2activities/design, background studies, and following standard guidelines.3, 12C34,6R, Pr, AS													

	Develop writing and					
	presentation skill, and					
CO3	demonstrate ethical	8, 10	C3		4	R, Pr
	considerations in					
	conducting research					

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create)

COURSE CONTENT

- **1.** Foundations of Research: Meaning of Research; Definitions of Research; Objectives of Research; Motivation in Research; General Characteristics of Research; Criteria of Good Research; Types of Research; Concept of theory, empiricism, deductive and inductive theory; Characteristics of scientific method.
- 2. Problem Identification and Formulation: Meaning and need of Review of Literature; How to Conduct the Review of literature; Research Question – Investigation Question – Measurement Issues – Hypothesis – Qualities of a good Hypothesis –Null Hypothesis & Alternative Hypothesis. Hypothesis Testing – Logic & Importance.
- 3. Research Design: Concept and Importance in Research Features of a good research design Exploratory Research Design concept, types and uses, Descriptive Research Designs concept, types and uses. Experimental/Computational Design: Concept of Independent & Dependent variables.
- **4. Data Analysis:** Data Preparation Univariate analysis (frequency tables, bar charts, pie charts, percentages), Bivariate analysis Cross tabulations and Chi-square test including testing hypothesis of association.
- **5. Research Misconduct and Ethics:** Understand the research misconduct; type of research misconduct; Ethical issues in conducting research; Ethical issues related to publishing, Plagiarism and Self-Plagiarism.
- 6. Use of Tools / Techniques for Research: Layout of a Research Paper; Methods to search required information effectively; Reference Management Software like Zotero/Mendeley; Software for paper formatting like LaTeX/MS Office; Software for detection of Plagiarism. Time management and developing Gantt Charts.

CO-PO	MAF	PPING													
 	1			1											
No.		Course Learning C	Outcome	-		PR		RA	M	OU7	ГCO	MES	5 (PO)	10
	TLI		1	1	2	3	4	5	6	7	8	9	10	11	12
	Und fund	erstand the	research												
CO1	nroh	lem statement a	nd research		3										
	aues	tions/objectives.	nd researen												
	Forr	nulate and compo	se a research												
	proposal considering research														
CO2	activ	ities/design,	background			1									2
	studi	es, and following	ng standard												
	guia Dove	elines.	presentation												
	skill	and demonstr	rate ethical												
CO3	cons	iderations in	conducting								1		3		
	resea	arch	e												
			(3 – High, 2	2- M	ediu	m, 1	-lov	N)							
T				_	_	_	_	_	_	_	_	_	_		
Justific	Justification for CO-PO mapping:														
Mappir	ıg	Corresponding					Jus	stifi	cati	ons					
		Level of													
	22	matching	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>			1			C	1	4 .	1.			
CO1-PC	$\frac{12}{12}$	3	Student will	unae finc	ersta	na re	esea	rcn rb r	rob	dam	s an	us d fo	rmul	oto ro	saarch
02-10)2	1	statements	IIII	ı ou	1105	cart	n F	100	nem	is an	u 10	IIIIui	ale le	search
CO2-PC	012	2	Students will	ll b	e at	ole 1	to ı	ise	gai	ned	kn	owle	dge	in re	search
CO3-P(18	1	Student will		elon	writi	ing	and	nre	cont	atio	n eki	1		
CO3-P($\frac{10}{10}$	3	Student will	deve dei	mon	strat	e el	thic	al c	cons	ider	ation	ons in conducting		
00010		C	research											• • • • •	
TEACH	HING	LEARNING STR	ATEGY												
Teachin	g and	Learning Activitie	S									Enga	igem	ent (h	ours)
Face-to-	-Face	Learning												10	
-	Leciui Practi	e cal / Tutorial / Stud	io										2	+ð 77	
	Studer	t-Centred Learning	ло Э										4	12	
Self-Di	rected	Learning	>											30	
	Non-fa	ace-to-face learning	9										1	12	
-	Report Preparation]	18				
Formal Assessment									_						
	Contir Donor	t Submission (2)											1	.5	
-	Preser	(2)											(-) 5	
		(2)										80			
Total															
10101															
											1				

TEACHING METHODOLOGY

Lecture and Discussion, Mini-Seminars by Experts, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
1	Foundations of Research: Meaning of Research; Definitions of Research; Objectives of Research; Motivation in Research; General Characteristics of Research; Criteria of Good Research; Types of Research; Concept of theory, empiricism, deductive and inductive theory; Characteristics of scientific method.	
2	Practice session on Foundations of Research	
3	Problem Identification & Formulation: Meaning & need of Review of Literature; How to Conduct the Review of literature; Research Question – Investigation Question – Measurement Issues – Hypothesis – Qualities of a good Hypothesis –Null Hypothesis & Alternative Hypothesis. Hypothesis Testing – Logic & Importance	Continuous Assessment (presentation/ quiz/other assignment)
4	Practice session on Problem Identification & Formulation	
5	Practice session on Research Design	
6	Data Analysis: Data Preparation – Univariate analysis (frequency tables, bar charts, pie charts, percentages), Bivariate analysis – Cross tabulations and Chi-square test including testing hypothesis of association.	Assignment 1 Assignment has to
7	Data Analysis: Data Preparation – Univariate analysis (frequency tables, bar charts, pie charts, percentages), Bivariate analysis – Cross tabulations and Chi-square test including testing hypothesis of association.	students will submit report and give PPT
8	Practice session on Data Analysis	
9	Research Misconduct and Ethics: Understand the research misconduct; type of research misconduct; Ethical issues in conducting research; Ethical issues related to publishing, Plagiarism and Self-Plagiarism.	
10	Practice session on Research misconduct and Ethics	Continuous
11	Use of Tools / Techniques for Research: Layout of a Research Paper; Methods to search required information effectively; Reference Management Software like Zotero/Mendeley; Software for paper formatting like LaTeX/MS Office; Software for detection of Plagiarism. Time management and developing Gantt Charts.	Assessment (presentation/ quiz/other assignment)
12	Practice session on Use of tools / techniques for Research	

	13	Review Session (Theory) – I /Final Presentation	Assignment 2				
-			Assignment has to				
		Review Session (Practice) – II /Final Presentation	provide before, here				
	14		students will submit				
			report and give PPT				

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks			
1, 3	Assignment I	20				
2, 3	Assignment II	50				
1, 2	Continuous Assessment	30				
(CO = Course Outcome)						

REFERENCE BOOKS

- 1. Engineering Research Methodology: A Practical Insight for Researchers. Springer, by Deb, Dipankar, Dey, Rajeeb, Balas, Valentina E.
- 2. Research Methods for Engineers, 1st Edition, by David V. Thiel.
- 3. Handbook of Research Methodology by Talati, J.K.
- 4. Introducing Research Methodology: A Beginner's Guide to Doing a Research Project by Uwe Flick
- 5. DRM, a Design Research Methodology by Lucienne T.M. Blessing and Amaresh Chakrabarti
- 6. Research Methods: Information, Systems, and Contexts by Kirsty Williamson, Graeme Johanson
- 7. Zelkowitz, M. V. and Wallace, D. R. (1998), Experimental models for validating technology, Computer, vol. 31, no. 5, pp. 23-31.
- 8. Internet, mail, and mixed-mode surveys : the tailored design method (3rd ed.) by Dillman, D. A., Smyth, J. D., & Christian, L. M.
- 9. Improving survey questions: design and evaluation. Sage Publications, by Fowler, F. J.
- 10. Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.).
- 11. Mahwah, NJ: Lawrence Erlbaum Associates, by Cohen, J., Cohen, P., West, S., & Aiken, L.
- 12. Experimental and Quasi-Experimental Design for Generalized Causal Inference. Boston, Mass: Houghton Mifflin, by Shadish W.R., Cook T.D. & Campbell P.T.
- 13. Computational handbook of statistics (4th ed.). New York: Longman, by Bruning, J. L. & Kintz, B. L.

Fall Semester L-1, T-I

COURSE INFORMATION							
Course Code	: GEBS 101	Lecture Contact Hours	: 2.00				
Course Title : Bangladesh Studies		Credit Hours	: 2.00				
DDE DENIIG	TTE						

PRE-REQUISI

N/A

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course has been designed for undergraduate engineering students to help them learn the rich history of Bangladesh, to understand present Bangladesh in the light of history and to provide them with basic knowledge of historical events which eventually led to the formation of Bangladesh and constitution of Bangladesh, current trends in economic development and thereby to enhance their understanding of present phenomena in the light of history which will make them responsible citizen.

OBJECTIVE

1. To equip students with factual knowledge that will enable them to learn and critically appreciate the history, culture, and economy of Bangladesh.

2. To trace the historical roots of Bangladesh as an independent state focusing on the social, cultural and economic developments that have taken place since its independence.

3. To promote an understanding of the development of Bangladesh and its culture from ancient time.

4. To create an awareness among the students about the History, Geography, Economics, Politics and Culture of Bangladesh.

LEARNING OUTCOMES & GENERIC SKILLS									
No.	Course Outcomes	Corresponding	Bloom's	ИD	СР	CA	Assessment		
	Course Outcomes	PO	Taxonomy	٨٢			Methods		
CO1	Identify specific stages of Bangladesh's political history, through the ancient, medieval, colonial and post-colonial periods and critically analyse plurality of cultural	6	C1, C2	7			Q, ASG, F		
	identities of Bangladesh.								
CO2	Explain the economy and patterns of economic changes through qualitative and quantitative analysis.	6	C1, C2	7			Q, ASG, F		

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- 1. Geography
- 2. History
- 3. Environment, Economy and Culture of Bangladesh

b. Detail Contents:

Bangladesh Geography:

Location, Area, Boundary, Physiography, River system, Forest and Climate, Demography of Bangladesh, Maritime zones.

History:

Overview of the ancient Bengal; anthropological identity of the Bengali race; main trends in the history of medieval Bengal; Bengal under the East India Company; religious and social reform movements; nationalist movements, division of the Indian sub-continent; language movement 1948-1952; education movement of 1962; six-point movement of 1966; mass uprising of 1969; war of independence and emergence of Bangladesh in 1971, Constitution of Bangladesh, Political Development and Democratic Transition (1971-1990), Political Development (1991- Present), Bangladesh's contribution to world peace and its security.

Environment, Economy and Culture:

Land, Characteristics of tropical monsoon climate, Forests and biomass, Fish, Minerals, Health, Education, Agriculture, Industries, NGOs, Population, Sociological and Cultural aspects of Bangladesh, Economy and National development, Development and Progress of the Millennium Development Goals (MDGs), Public Administration in Bangladesh, State of Good Governance in Bangladesh, Art and Literature, Main traditional cultural events, Vision-2021, Digitalization, Tourism and Natural Resources, Bangladesh and International Relations.

CO-PC	CO-PO MAPPING												
No Course Outcome PROGRAM OUTCOMES (PO)													
INO.	Course Outcome	1	2	3	4	5	6	7	8	9	10	11	12
	Identify specific stages of												
	Bangladesh's political history,												
COL	through the ancient, medieval,						3						
COI	colonial and post-colonial periods						5						
	and critically analyse plurality of												
	cultural identities of Bangladesh.												
	Explain the economy and patterns of												
CO2	economic changes through						3						
	qualitative and quantitative analysis.												

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING								
Mapping	Level of Matching	Justification						
CO1-PO6	3	The students will have a good overall knowledge of historical, social, cultural aspects of Bangladesh.						

CO2-PO6	3	Students will build attitu responsibility. They will related to engineering.	ide of ethical and the professional have an understanding of economy					
TEACHING LEARNING STRATEGY								
Teaching and Learning Activities			Engagement (hours)					
Face-to-Face Learning			28					
Self-Directed L	earning	75						
Formal Assessm	nent		5.5					
Total			108.5					
			•					

TEACHING METHODOLOGY

Class Lecture, Pop quiz, Case study, Problem solving

COURSE SCHEDULE

Week-1	Торіс	СТ	
Class-1	Introductory class: Brief discussion on the total syllabus, basic		
	requirements of the course, methods of assessment of the course		
Class-2	Bangladesh Geography: Location, Area, Boundary, Physiography, River		
	System, Forest and Climate, Demography of Bangladesh.		
Week-2			
Class-3	Overview of the ancient Bengal; anthropological identity of the Bengali		
race; main trends in the history of medieval Bengal			
Class-4	Bengal under the East India Company, ;		
Week-3			
Class-5	Religious and Social reform movements		
Class-6	Nationalist movements, division of the Indian sub-continent		
Week-4			
Class-7	Language movement 1948-1952, Education movement of 1962		
Class-8	Language movement 1948-1952, Education movement of 1962		
Week-5			
Class-9	Six-point movement of 1966; Mass uprising of 1969;		
Class-10	War of Independence and Emergence of Bangladesh in 1971		
Week-6			
Class-11-12	Constitution of Bangladesh, Political Development and Democratic		
	Transition (1971-1990)	Mid	
Week-7		exam	
Class-13-14	Political Development (1991- Present), Bangladesh's contribution to world peace and security.		
Week-8			
Class-15	Land, Characteristics of tropical Monsoon climate,		
Class-16	Forests and biomass, Fish		
Week-9			
Class-17	Minerals, Health and Education,		
Class-18	Agriculture, Industries		
Week-10			
Class-19	NGOs, Population, Sociological and Cultural aspects of Bangladesh	1	
Class-20	Economy and national development,		
Week-11			

Class-21	Development and Progress of the Millennium Development Goals						
	(MDGs)						
Class-22	Public Administration in Bangladesh, State of Good Governance in						
	Bangladesh						
Week-12							
Class-23	Art and Literature						
Class-24	Traditional cultural events						
Week-13							
Class-25	Vision-2021, Digitalization						
Class-26	Tourism and Natural Resources						
Week-14	Week-14						
Class-27	Bangladesh and International Relations						
Class-28	Revision of the course						

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessment		
1	СТ	20	
1	Class Performance	5	
	Exam		
1 &2	MID Term	15	
1&2	Final Exam	60	

REFERENCE BOOKS

1. Bangladesh Studies: Md. Shamsul Kabir Khan and Daulatunnahar Khanam

2. The Constitution of the People's Republic of Bangladesh

- 3. Discovery of Bangladesh: Akbar Ali Khan
- 4. History of Bangladesh, Vols, 1-3: Sirajul Islam
- 5. History of Modern Bengal, Vol, 1: R C Majumdar
- 6. Dynastic History of Bengal: Dr. Abdul Mumin Chowdhury
- 7. A History of Bangladesh: William Van Schendel
- 8. A History of Sufism in Bengal: Dr. Enamul Huq
- 9. Geography of Bangladesh: Harun Er Rashid
- 10. Banglapedia: National Encyclopedia of Bangladesh, Vols, 1-10: Sirajul Islam
- 11. History of Bengal: (Mughal Period 1526-1765): R. A. Chandra
- 12. Land of Two Rivers: Nitesh Sengupta

Spring Semester L-3, T-I

COURSE INFORMATION									
Course Code	: GEE 305	Lecture Contact Hours	: 2:00						
Course Title	: Fundamentals of Economics	Credit Hours	: 2:00						
PRE-REOUISITE									

N/A

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To learn the basic theories of economics in critical thinking and problem solving. To introduce the students to identify the basic features of economic development and regarding planning for the economy of the country.

OBJECTIVE

- 1. Students will demonstrate their knowledge of the fundamental and technical concepts of economics.
- 2. To work effectively in the organizations with honesty and integrity.
- 3. Students will be able to understand consumer behavior, elasticity and different market structure.
- 4. Students will be able to identify the determinants of various macroeconomic aggregates such as national income, full employment, unemployment, consumption and savings function, inflation, productivity and the major challenges associated with the measurement of these aggregates.

LEAF	RNING OUTCOMES & GEN	NERIC SKILLS					
No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
CO1	Realise the basic concepts and principles of Micro and Macro Economics.	1,2	C1	2			Q, ASG, F
CO2	Identify and apply the indifference curve theory and market equilibrium in real life situation	2,5	C2	2			Q, ASG, F
CO3	Explain time-value of money concept and apply the knowledge of inflation, investment and cost benefit analysis	4,10	C2	2			Q, F, CS

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT					
Main Contents	Detail Contents				
Fundamental of Economics	Definition				
Production Possibility	1. PPF Curve.				
Frontier and Engineering Decision	2. Applying the PPF to Society's Choices by the Engineers.				
Utility Theory	Law of diminishing marginal utility.				
Demand	1. Definition. 2. Law of Demand. 3. Market Demand. 4. Reason for demand curve downward slopping. Mathematical Analysis				
Supply	1. Definition. 2. Supply curve. 3. Market Equilibrium.				
	1. Different types of elasticity.				
Elasticity of Demand	2. Different types of price elasticity.				
	3. Relation between AR, MR and elasticity				
	4. Mathematical Analysis				
Indifference Curve Analysis and Consumers Equilibrium	Budget Line, MRS, Consumer Choice				
Production Function from Engineering point of view	1. TP, AP, MP. 2. Law of Variable proportion. 3. Law of returns				
CostAnalysisandEngineering Economics	1. TC, AC, MC. 2. Short run cost analysis				
	1. Perfectly Competitive Market				
Analysis of Market Structure and Engineering Decision	2. Monopoly and Monopolistic Market				
Key concept of Macroeconomics	Definition				
National Income	GDP, GNP, NNP, NI				
Circular Flow of National Income and Engineering Resources	Two, Three and Four sector Economy				

Saving	8	Savings F Derive the functions:				Savings Function, APS, MPS. Derive the savings function from consumption functions; Mathematically and Graphically.									
Consu	mptions	Consumpti	Consumption functions, APC, MPC												
Invest	ment		Investmen	nvestment Theories, Investment Multiplier											
Engine the Count	eering 1 Inflation ry	Plan considering Rate of the	Demand-P	Demand-Pull and Cost-Push Inflation											
The policy	Effect on Engi	of Monetary neering Plan	Impact and Use												
The E on En	Effect of gineering	Fiscal Policy g Plan	Impact and	npact and Use											
Theor	ies of De	evelopments	1 or 2 Theo	ries	of E	conc	omic	: De	evelo	opm	ent.				
Economic Problems in Developing Countries especially in Bangladesh.															
CO-PO MAPPING															
No.	Course Outcome					PF	ROC	iRA	M	DU.	ГCO	ME	S (PC))	
	Understand the basic concepts and			1	2	3	4	5	6	7	8	9	10	11	12
CO1	principles of Micro and Macro Economics.			3											
CO2	Identify and apply the indifference curve theory and market equilibrium in real life situation				2										
CO3	Explair concep inflatio benefit	n time-value of mo t and apply the kno n, investment and analysis	oney owledge of cost	3											
CO4	Understand the Economic Development and Planning for the country. To get idea of international accommy														
(Numer	rical met	hod used for mapp	oing which ir	ndica	ites 3	3 as 1	high	n, 2	as n	nedi	um	and	1 as l	ow lev	vel of
matchin	ng) FICATI	ON EOD CO DO		I											
JU211	FICATI	Level of	MATTING	r											
Map	ping	Matching					Ju	stif	icat	ion					
CO1-P	01	3	Students wi elasticity ar	ll be id di	able ffere	e to u ent m	unde nark	ersta et s	and truc	con ture	sum	er b	ehavi	or,	
CO2-P	02	2	Applying th and problem	ne ba n sol	isic t lving	heor	ries	of e	con	omi	cs in	ı cri	tical t	hinkir	ıg
CO3-P	01	3	Students wi	ll be	able	e to o	expl	ain	tim	e-va	lue	of m	oney	conce	ept
CO4-P	01	3	Student w	ill '	unde	rsta	nd	the	E	con	omic	: D	evelo	pmen	t and

		Planning for the country	
TEACHING L	EARNING STR	ATEGY	
Teaching and L	earning Activities		Engagement (hours)
Face-to-Face Le	earning		28
Self-Directed L	earning		75
Formal Assessn	nent		5.5
Total			108.5

TEACHING METHODOLOGY

Class Lecture, Pop quiz, Case study, Problem solving

COURSE SCHEDULE

Week		Торіс			СТ	Remarks
1-4	Introduction Economics of Deman Mathematic Market M Curve and of IC, MR of Enginee	on to Engineering Econom s in Engineering., Demand nd, Demand curve relate ical Application, Supply Mechanism., Consumer Ch Budget Line), Indifference S, Theory of production in ers	rtance of erminants dea and rminants. ifference properties t of view	CT-1		
5-7	Theory of Firms Ec Market, I competitiv Monopoly	cost, Short run and long run juilibrium (Concepts), D How the Engineers will re market. How the Eng Market, National Income a	e ypes of perfectly ll act in	CT-2		
8-9	Aggregate Determina Keynes F Income an resources a	Demand and Aggregate Su tion of Level of Income and ull Employment. Theory d Expenditure (How engin and decision-making proces	pply d Employn Circular eers will u s of projec	nent flow of tilize the ct plan)	MID	
10-12	Consumpt of Inflati problem at	ion Function, Saving Funct on, Impact of Inflation nd its impact on society, Co	ion, Inflati n, Unemj st benefit	on, Type ployment analysis		
13	Theories Problems	of Economic Develop in Developing Countries	oment, E	Economic		
14	Contribution of the Engineers in the Economic Development of Bangladesh. How the Engineers compare their development projects in the context of World Economy.					
ASSESSMENT STRATEGY				L		
	COs	Assessment Method	(100%)	Remarks	5	
		Class Assessment	1			
	1	Assignment	20			
	2	Assignment	20			

		Exam			
	2	Final Exam, CT	80		
	3	Final Exam, CT, MID	80		
	4	Final Exam, CT	100		
REFERENC	CE BOOKS				
1.	Economics b	y P. A. Samuelson and W.	D. Nordha	us (7 th Edition	n)
2.	Microeconor	nics by Robert S. Pindyck	and Daniel	L. Rubinfeld	l (8 th Edition)
3.	Macroecono	mics by N. Gregory Manki	w (8 th Editi	on)	
1	Duin simle of	Economics by N. Casesary I	Man 1	th Talitian)	

- 4.
- Principle of Economics by N. Gregory Mankiw (8th Edition) Engineering Economics by Niall M. Fraser and Elizabeth M. Jewkes. (5th Edition) 5.

Fall Semester L-3, T-II

COU	COURSE INFORMATION								
Cours	e Code GES 307		Lecture C	Contac	t Hou	rs	2.00		
Cours	e Title Fundamentals of	Sociology	Credit Ho	ours			2.00		
PRE-REQUISITE									
None									
CURI	RICULUM STRUCTURE								
Outco	me Based Education (OBE)								
OBJE	ECTIVE								
Under	standing social phenomena								
LEAF	RNING OUTCOMES & G	ENERIC SKILLS	5						
No.	Course Outcome	Correspondin g PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods		
CO1	Understand the basic nature, scope and perspectives of sociology.	1, 2	C1	1			ASG, T ,F		
CO2	Apply sociologica imagination to the contex of social problems of BE society.	3	C2,C3	1,2			ASG, T ,F		
CO3	Understand the stages of social research process and methodologies	7	C1,C2	1,2			ASG, T ,F		
CO4	Analyze different cultures civilizations and differen social problems and design solutions for those.	11	C1,C2	1,2			ASG, T ,F		
CO5	Understand and analyze social stratification different social systems socialism, capitalism and relate them to BD society	7	C2	1,2			ASG, T ,F		

CO6 in enviro for developm	e to assess nd cultural issues onmental context sustainable ent	7	C3	2			ASG, T ,F
----------------------------------	---	---	----	---	--	--	-----------

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

a. Main Contents: Understanding society, social phenomena and social change

b. Detail Contents: Nature and scope Sociological imagination, Perspectives of sociology, Stages of social research and research method, Culture and civilization, Socialization and self - development, Globalization and social changes, Media and individual, Social organizations and social problems, social stratification; industrial revolution, Capitalism and socialism, Work and economic life, Environment and human activities, Climate change and global risk, Population and human society, Urbanization and city development, Social changes and technology.

CO-PO MAPPING

No	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
110.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Understand the basic nature, scope and perspectives of sociology.	3	3										
CO2	Apply sociological imagination to the context of social problems of BD society.			3									
CO3	Understand the stages of social research process and methodologies							3					
CO4	Analyze different cultures, civilizations and different social problems and design solutions for those.											3	
CO5	Understand and analyze social stratification, different social systems, socialism, capitalism and relate them to BD society							3					
CO6	Apply contextual knowledge to assess societal and cultural issues in environmental context for sustainable development							3					

Justification	for CO-PO mapp	ing:								
Mapping	Corresponding Level of	Justifications								
	matching									
CO1-PO1	3	Students will have perspectives of socio	the knowledge about nature, scope and blogy.							
CO1-PO2	3	They will identify a perspectives.	nd research literature on various sociological							
CO2-PO3	3	Design systems, co methodologies	omponents of social research process and							
CO3-PO7	3	Understand and eval and impact of profes	uate the sustainability ssional work of social methodology							
CO4-PO11	3	Students will demonstrate knowledge of different cultures, civilizations and different social problems management and economic decision making								
CO5-PO7	3	Students will ana systems, socialism, for sustainability.	lyze social stratification, different social and capitalism and relate them to BD society							
CO6-PO7	3	Students will be ab societal and cultural	le to apply contextual knowledge to assess issues in environmental context							
TEACHING	LEARNING STR	RATEGY								
Teaching and	Learning Activitie	S	Engagement (hours)							
Face-to-Face	Learning		28							
Self-Directed	Learning		75							
Formal Asses	sment		5.5							
Total			108.5							
TEACHING	TEACHING METHODOLOGY									

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSES	SCHEDU	LE	
Week-1	Class	Definition, nature and scope of sociology, Sociological	CT 1
	1-2	imagination	
Week-2	Class		
	3-4	Perspectives of sociology, Orientation of sociological theories	
Week-3	Class		
	5-6	Social research and its process, Research designs and techniques.	
Week-4	Class		
	7-8	Introducing culture and its variations, civilization	
Week-5	Class	Defining family and its changes, Socialization process and	
	9-10	development of self	
Week-6	Class	Introducing globalization and its impact on human life, Factors	MID
	11-12	responsible to globalization	
Week-7	Class	Media and its impact in modern society, Addressing social	

	13-14	problems of Bangladesh	
Week-8	Class	Introducing social groups and Introducing bureaucracy and good	
	15-16	governance	
Week-9	Class	Introducing social stratifications and social inequality, Poverty	
	17-18	and its types and dimensions	
Week-10	Class	Industrial revolution and aftermath, Urbanization and city	CT 2
	19-20	development	
Week-11	Class	Capitalism: features and influence, Socialism: features and	
	21-22	influence	
Week-12	Class	Environment and human activities, Climate change and global	
	23-24	risk	
Week-13	Class	Population of Bangladesh: problem or prospect, Crime and	
	25-26	deviance: a brief analysis	
Week-14	Class	Review	
	27-28		

ASSESSMENT STRATEGY

COs	Assessment Method	100%	Remarks					
	Class as	sessment						
1-3	Class performance	05						
4-6	Class tests/ assignment	20						
1-6	Mid term exam	15						
	Ex	am						
1-6	Final exam	60						
REFERENCE BOOKS								

- 1. Sociology in Modules: by Richard Schaefer, 2nd edition, 2013
- 2. Sociology Primary Principles: by CN Shankar Rao
- 3. Anthony Giddens- 5th edition
- 4. Relevant journal

Spring Semester L-2, T-I

COURSE INFORMATION									
Course Code	CSE 275	Lecture Contact Hours	: 3.00						
Course Title	Computer Programming Language	Credit Hours	: 3.00						
PRE-REQUISITE									
N/A									

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course is designed to introduce the fundamental principles, mechanism of programming skills and develop basic programming skills to design and develop computer programs. Apart from these, this course will also introduce the important topics related to Arduino programming.

OBJECTIVE

- 1. The course is designed to provide fundamental knowledge of C language.
- 2. Students will be able to develop logics which will help them to create programs, applications in C.
- 3. Learning the basic programming constructions they can easily switch over to any other language (like C++ and Arduino programming) in future.

LEAR	NING OUTCOMES& GE	NERIC SKILI	LS			
No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Describe the fundamentals and concepts of procedural programming language.	C1-C3	1	-	1	Т
CO2	Analyse the fundamental principles, typical characteristics and mechanisms of computer programming language.	C4	3	-	6	T, F, MT
CO3	Develop programming skills with respect to program design and development.	C6	1,3	-	5	F
CO4	Able to develop the communication skill by presenting topics on Computer Programming Language.	A2	1	-	5	Q, PR

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)

COURSE CONTENT

a. **Main Contents:** Introduction to computer programming; Number System; Basic programming Structures; Control Structure; Array; Function; Pointer; Dynamic Memory Allocation; User defined data types; Bitwise Operations; File I/O, header files,

preprocessors, error handling; Introduction to C++; Fundamentals on Arduino programming.

b. Detailed Contents:

- Introduction to computer programming: Programming Concepts, Program Development Stages, Structured Programming Language
- Number System: binary, octal, decimal and hexadecimal systems
- Basic programming Structures: Data types and their memory allocation, operators, expressions, basic input/ output
- Control Structure: if-else, switch case, nested if-else, loop, nested loop
- Array: one-dimensional array, multi-dimensional array, character array/ string
- Function: Function definition, function declaration, function call
- Pointer: Different types of pointers, pass pointer as arguments, call by value vs call by reference
- Dynamic Memory Allocation: Malloc, calloc, free, realloc
- User defined data types: Structure, union, enumeration
- Bitwise operations: AND, OR, NOT, XOR, Left shift, Right Shift
- File I/O, header files, preprocessors, error handling
- Introduction to C++: Basic Ideas of OOP- encapsulation, inheritance and polymorphism, Classes and objects
- Fundamentals on Arduino Programming: Setup the Arduino software and start outputting code

SKILL MAPPING

				PROGRAM OUTCOMES (PO)											
No.		Course L	earning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Desc conce	ribe the epts of pre	e fundamentals and ocedural language.	3											
CO2	Analyse the fundamental principles, typical characteristics and mechanisms of a computer programming language.				3										
CO3	Develop basic programming skills with respect to program design and development.					3									
CO4	Able skill Com gh. 2-	to develo by presen puter Prog Medium.	pp the communication ting topics on gramming Language. 1-low)										1		
JUSTI	FICA	TION FO	DR CO-PO MAPPING												
Mapp	oing	Level			J	ustif	ïcati	ons					-		
CO1-P	01	3	In order to solve complex engineering problems using computer engineering knowledge, the knowledge and concepts of procedural language is very important.												
CO2-P	02	3	To identify and analyse the complex engineering problems regarding computer science, one needs to have the knowledge of analysing the fundamental principles, typical characteristics and mechanisms of a computer programming language												
CO3-P	03	3	To design and developroblems, one needs to	op s deve	solut	ions basic	for pro	co grai	omp mm	lex	coi skill	mpu ls.	ter e	ngine	ering
CO4-P	O10	1	In order to give a pre taught, one needs to have	esent ve sti	atior	n on com	the	sel sel	ecti tion	ve skil	topi lls.	cs f	rom	the c	ourse
TEAC	HING	LEARN	ING STRATEGY												
Teachi	ng and	Learning	g Activities								E	Enga	geme	nt (ho	ours)
Face-to	-Face Lectu Practi	Learning re cal / Tuto	orial / Studio										42	2	
Self-Di	irected	Learning	5												
	Non-f	face-to-fa	ce learning										42 2	2	
	Asses	sment Pro	eparations										2	1	
Formal	Asses	sment	-												
	Conti Final	nuous As Examinat	sessment										2		
Total	11141												13	1	

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

		· ·									
Week			Topics				Assessment Methods				
1	Introduction	to (computer programming:	Program	ning Conce	pts,					
	Program Dev	velopm	ent Stages, Structured Pro	gramming 1	Language;						
	Basic progra	mming	g Structures: Data types an	nd their me	mory allocati	lon,	Class Test – 1				
	operators, ex	pressio	ons, basic input/ output				Class T Cst = 1				
2	Number Syst	tem: bi	nary, octal, decimal and he	exadecimal	systems						
3	Control Stru	cture: i	f-else, switch case, nested	if-else, loo	p, nested loop)					
4	Control Strue	cture: l	oop, nested loop								
5	Array: one-c	limensi	ional array, multi-dimensi	onal array,	character and	ray/					
	string						Class Test – 2				
6	Function: Fu	nction	definition, function declar	ation, funct	tion call						
7	Pointer: Diff	ferent 1	types of pointers, pass po	inter as arg	guments, call	by					
	value vs call	value vs call by reference									
8	Dynamic Me	emory A	Allocation: Malloc, calloc,	free, reallo	oc						
9	User defined		Mid Term								
10	Bitwise oper	ations:	AND, OR, NOT, XOR, L	eft shift, Ri	ght Shift						
11	File I/O, hea										
12	Introduction	to C+-	+: Basic Ideas of OOP- en	capsulation	, inheritance	and					
10	polymorphis	m	<u> </u>				Class Test – 3				
13	Introduction	to C++	-: Classes and objects	0	• • • • • •						
14	Introduction code	to Ard	uino: Setup the Arduino s	offware and	l start outputt	ing					
ASSES	SMENT STR	RATE	GY				L				
		COs	Assessment Method	(100%)	Remarks						
			Class Assessment								
		1	Assignment	20							
		2	Assignment	20							
			Exam								
		2	Final Exam, CT	80							
		3	Final Exam, CT, MID	80							
		4	Final Exam, CT	100							
REFEI	REFERENCE BOOKS										
1. Teac	h Yourself C ($(3^{rd} Ed)$	ition) by Herbert Schidlt								
2. Prog	2. Programming in Ansi C (6 th Edition) by E Balagurusamy										
3. C: TI	3. C: The Complete Reference (4 th Edition) by Herbert Schildt										
4. C++:	The Complet	e Refe	rence (4 th Edition) by Herb	ert Schildt							

5. C Programming Language (2nd Edition) by Dennis M. Ritche

Spring	Semester	L-2.	T-I
opring	Demester	1 -2,	T _T

COLU	OF INE		Spring Semester 1	2, 1 1					
	KSE INF	ORMATION		.	<u> </u>		2.00		
Course	e Code	CSE 276		Lectur	e Conta	act Hours	: 3.00		
Course	e Title	Computer Progra	amming Language	Credit	Hours		: 1.50		
DDE	DEALIIS	Sessional							
PKE-KEQUISITE									
CSE 2		MSTDUCTUDE							
		d Education (ORE)							
SVNO									
This		a IIONALE	ctically introduce the	fundan	antal 1	principles	mechanism of		
nrogra	mming	s designed to pravelon	basic programming	skille t	o desig	n and d	evelop computer		
progra	ms Ana	rt from these this c	ourse will also introduc	skills v	nnortan	t topics r	elated to Arduino		
progra	mming	tt from these, this e	ourse will diso introduc		nportan	t topics i			
OBJE	CTIVE								
1.	The cor	urse is designed to p	rovide practical knowle	dge of	C langu	age.			
	1110 000		rovide practical line vie	uge of	e lungu	490.			
2.	Student	s will be able to	develop logics whic	h will	help the	hem to	create programs,		
	applicat	tions in C.							
3	Loornin	a the basic program	nming constructs using	o other	languag	nas lika (Cill and Arduino		
5.	Drogram	ng the basic program	mining constructs using	g other	Tanguag	ges like v	L++ alla Alaulilo		
	Flogran	inning in future.							
LEAR	RNING (DUTCOMES& GE	NERIC SKILLS						
No	Co	urse Learning	Bloom's Taxonomy	CP	$C\Lambda$	KD	Assessment		
INU.		Outcome	Diooni s raxonomy	CI	CA	KI	Methods		
	Solve p	roblems					T, ASG		
	systema	atically using a							
CO1	structur	ed logic	C1-C3	1	-	4			
	approac	ch, OOP and							
	Arduin	o programming.							
	Practica	ally analyze the					T, ASG, Q		
	fundam	ental principles,							
CO2	typical	characteristics	C4	3	-	4, 5			
	and me	chanisms of a				,			
	structur	red programming							
	Tanguag	ge.					ТАСС		
	Constru	ict or develop					I, ASG		
CO3	comple	ete programs for C6			2	5,7			
	simple	to moderate							
	Complex	Droblems CA Com	unlay Activities VD Ve	owlada	o Drofil		t · DD Deciact ·		
(Cr - C)	vinplex	La coignment Dr	Dresentation: D Dan	owieug	E FIOIIIC	z, I - Ies	i, rk – riojeci; Mid Term		
$\nabla = V$ Exam	Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term								
		NTENT							

Main Contents: Introduction to computer programming; Number System; Basic programming Structures; Control Structure; Array; Function; Pointer; Dynamic Memory Allocation; User defined data types; Bitwise Operations; File I/O, header files, preprocessors, error handling; Introduction to C++; Introduction to MATLAB; Introduction to Arduino

Detailed Contents:

- Introduction to computer programming: Programming Concepts, Mathematical problems using printf, scanf
- Basic programming Structures: Data types and their memory allocation, operators, expressions, basic input/ output
- Control Structure: if-else, switch case, nested if-else, loop, nested loop
- Array: one-dimensional array, multi-dimensional array, character array/ string
- Function: Function definition, function declaration, function call
- Pointer: Different types of pointers, pass pointer as arguments, call by value vs call by reference
- Dynamic Memory Allocation: Malloc, calloc, free, realloc
- User defined data types: Structure, union, enumeration
- File I/O, header files, preprocessors, error handling
- Introduction to C++: Basic Ideas of OOP- encapsulation, inheritance and polymorphism, Classes and objects
- Fundamentals on Arduino Programming: Setup the Arduino software and start outputting code

SKILL MAPPING

No	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
INO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
	Solve problems systematically using												
CO1	a structured logic approach, OOP and						3						
	Arduino programming.												
	Practically analyze the fundamental principles, typical characteristics and mechanisms of a structured												
CO2							3						
							5						
	programming language.												
	Construct or develop complete												
CO3	programs for simple to moderate									2			
	problems individually.												
(3 - Hi)	gh 2- Medium 1-low)												

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level	Justifications
CO1-PO6	3	To apply reasoning informed by the contextual knowledge one needs to know how to solve problems using a structured logic approach.

CO2-PO6	To apply reasoning informed by the contextual knowledge one needs to know how to practically analyze the fundamental principles, typical characteristics and mechanisms of a structured programming language.								
CO3-PO9	2	To function effectively as an complete programs individu	n individual, one needs to ally.	o know how to develop					
TEACHIN	G LEAR	NING STRATEGY							
Teaching an	nd Learnin	g Activities		Engagement (hours)					
Face-to-Fac	e Learning								
Lecture -									
Stuc	dent-Centr	ed Learning		42 -					
Self-Directe	ed Learnin	g							
Nor	n-face-to-fa	ace learning		21					
Rev	vision			_					
Ass	essment Pi	reparations		_					
Formal Ass	essment			4					
Con	ltinuous As	ssessment		4					
Total				70					
TEACHIN	G METH	ODOLOGY		10					
Lecture and		n Co operative and Collabor	tive Method Problem B	ased Method					
			auve Method, Floblelli B						
COURSE	SCHEDU								
Week-1	Mathema	tical problems using printf, sc	anf						
Week-2	Number	System: Conversion between	n different number syste	ems such as binary,					
W1-2	octal, dec	timal and hexadecimal system	S						
Week-3	Control S	Structure: loop nested loop	nested 11-erse, loop, neste						
Week-5	Array or	e-dimensional array multi-di	mensional array characte	er arrav/ string					
Week-6	Function	Function definition, function	declaration, function cal	1					
Week-7	Lab Test	-1		•					
Week-8	Pointer: 1	Different types of pointers, pa	ss pointer as arguments,	call by value vs call					
	by refere	nce							
Week-9	Dynamic	Memory Allocation: Malloc,	calloc, free, realloc						
Week-10	User defi	ned data types: Structure, unic	on, enumeration	• 0.					
Week-11	Bitwise c	perations: AND, OR, NOT, X	OR, Left shift, Right Shi	ift;					
Week-12	Introduct	ion to C_{++} : Classes and object							
WCCK-12	Introduct	ion to MATLAB: MATLAB	environment, matrices, fu	unction loop file					
	I/O		, in the optimization of t	, notion, 100p, me					
Week-13	Introduct	ion to Arduino: Setup the Ard	uino software and start o	utputting code					
Week-14	Lab Test	-2							
ASSESSM	ENT STP	ATEGY							
	Co	mponent	Gra	ding					
Continuou	is La	b participation and Report	30)%					

Assessment (60%)								
	Labtest-1, Labtest-2	30%						
	Lab Quiz	40%						
	Total Marks	100%						
REFERENCE	E BOOKS							
1. Teach Yours	self C (3 rd Edition) by Herbert Schidle							
2. Programmin	g in Ansi C (6 th Edition) by E Balagu	rusamy						
3. C: The Com	plete Reference (4 th Edition) by Herb	ert Schildt						
4. C++: The C	omplete Reference (4 th Edition) by He	erbert Schildt						
5. C Programm	ning Language (2 nd Edition) by Denn	is M. Ritche						

5. C Programming Language (2nd Edition) by Dennis M. Ritche

Spring Semester L-1, T-I

COU	RSE INFOR	RMATION	8	,							
Cours	e Code	EECE 159			Lecture	Conta	ct Hour	s	3.00		
Cours	e Title	Fundamentals of Elec	trical Engine	ering	Credit I	Hours			3.00		
PRE-	REQUISIT	E									
N/A	N/A										
CUR	RICULUM	STRUCTURE									
Outco	me Based Ed	lucation (OBE)									
SYNC	OPSIS/RAT	IONALE									
Basic introd visual	Basic electrical engineering is an introductory course in electrical engineering. Students are introduced to simple applied electrical circuits, theories and practice to impart skill set to have visualization of electrical engineering applications.										
OBJE	ECTIVE										
1.	To set a fin conceptual Circuits.	m and solid foundation understanding of bas	n in Electrica ic laws and	Engineerin analysis m	ng with ethods	strong in elec	analyti trical a	cal sk ind m	ills and agnetic		
2.	To provide electrical e	e students of all branc ngineering	thes of engin	eering with	n an ove	erview	of all	the f	ields of		
3.	To prepare	students for learning a	dvanced topic	s in electric	cal engir	neering	5				
LEARNING OUTCOMES & GENERIC SKILLS											
No.	Co	urse Outcome	Correspon ding PO	Bloom's Taxonom y	KP	CA	СР	Asse Me	essment ethods		

CO1	Understand & apply Kirchoff's laws, network theorems, time domain analysis for RL & RC series circuit	1, 2	C2, C3	K1		Q, ASG, F
CO2	Understand and analyse phasor diagram and waveforms for purely resistive, purely inductive and purely capacitive as well as series and parallel R- L, R-C & R-L-C circuits and also circuit Resonance.	2, 5	C3, C5	K6	CP1	Q, ASG, F
CO3	Understand concepts of Real, Reactive & apparent power and Power factor. Understand 3- phase supply and star and delta connection and their relationships. Power measurement by wattmeter	2, 12	C2, C3	K3	CP1	Q, ASG, F
CO4	Understand construction & working principle of 1-phase and 3-phase transformers. Understand Ideal and practical transformer and auto-transformer and its applications as well.	1,3	C1, C2	K5	CP1	Q, ASG, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Laws of electric circuit: Ohm's Law, Kirchhoff's voltage and current laws, delta-wye transformation. Electrical networks: network analysis methods of branch and loop currents, method of node pair voltages, Thevenin's and Norton's theorems, Magnetic concepts and units: magnetic field, right hand rule, magnetic flux density, Biot Savart law, magnetic field intensity, measurement of magnetic flux, energy of magnetic field, characteristic of ferromagnetic materials, theory of ferromagnetism, B-H curve, hysteresis loss, eddy current and eddy current loss, total core loss. Introduction to magnetic circuits. Electromagnetic forces: forces upon a current carrying conductor and charged particles moving in a magnetic field. Electromagnetic torque; electric motor. Electromagnetic induction and emf; Lenz's law, Blv rule, elementary a.c. generator.

General concepts and definitions. Instantaneous current, voltage and power, R-, L-, C-, RL-, RC- and RLC- branches, Effective current and voltage: average values, form factor, crest factor, power real and reactive. Introduction to vector algebra. Impedance in polar and Cartesian forms. Sinusoidal single-phase circuit analysis. Impedance in series, parallel branches, series-parallel circuits. Network analysis – Thevenin's theorem. Balanced poly phase circuits: three phase, four wire system of generated emfs, three phase, three wire systems, balanced wye loads, balanced delta loads, power in balanced systems, power factor. Balanced three phase circuit analysis and power measurement.

CO-PO MAPPING PROGRAM OUTCOMES (PO) No. Course Learning Outcome 1 2 3 4 5 6 7 8 9 10 1 12 1 & Understand apply Kirchoff's network theorems, laws. time CO1 3 1 domain analysis for RL & RC series circuit Understand analyse phasor and waveforms diagram and for purely resistive, purely inductive CO2 and purely capacitive as well as 3 2 series and parallel R-L, R-C & R-L-C circuits and also circuit Resonance. concepts Understand of Real. Reactive & apparent power and Power factor. Understand 3-phase CO3 3 2 supply and and delta star connection and their relationships. Power measurement by wattmeter Understand construction & working principle of 1-phase and 3-phase transformers. Understand Ideal and CO4 3 2 practical transformer and autotransformer and its applications as well. Justification for CO-PO mapping: Mapping Corresponding Justifications Level of matching CO1-PO1 3 Basic knowledge about Ohm's and Kirchoff's laws will be gained by the students CO1-PO2 1 Students will be able to identify, analyze and formulate problems in DC circuits domain Students will identify and analyze various problems related to AC CO2-PO2 3 circuits using principles of mathematics. CO2-PO5 2 Students use different measuring instruments for practical performance of series and parallel AC circuit. CO3-PO2 3 Students will identify, formulate and analyze various problems related to 3-phase power measurement using principles of mathematics. CO3-PO12 3-phase power measurement will be helpful to the students for 2 lifelong learning. Students will gain basic knowledge about 1-phase and 3-phase CO4-PO1 3 transformer along with auto transformer. CO4-PO3 2 Students will be able to design that will meet the specified

	needs with appropriate consideration for the safety about 1- phase and 3-phase transformer along with auto transformer.								
TEACHING	LEARNING STRATEGY								
Teaching and I	Engagement (hours)								
Face-to-Face I		42							
Self-Directed I	75								
Formal Assess	ment		5.5						
Total			122.5						
TEACHING	METHODOLOGY								
Class Lecture,	Pop quiz, Case study, Problem solving								
COURSE SC	HEDULE								
Lecture	Торіс	СТ	Remarks						
Lec 1-10	Laws of electric circuit: Ohm's Law, Kirchhoff's voltage and current laws, delta-wye transformation. Electrical networks: network analysis methods of branch and loop currents, method of node pair voltages, Thevenin's and Norton's theorems.	CT-1							
Lec 11-18	Magnetic concepts and units: magnetic field, right hand rule, magnetic flux density, Biot Savart law, magnetic field intensity, measurement of magnetic flux, energy of magnetic field, characteristic of ferromagnetic materials, theory of ferromagnetism, B-H curve, hysteresis loss, eddy current and eddy current loss, total core loss.	CT-2 CT-3							
Lec 19-26	Introduction to magnetic circuits. Electromagnetic forces: forces upon a current carrying conductor and charged particles moving in a magnetic field. Electromagnetic torque; electric motor. Electromagnetic induction and emf; Lenz's law, Blv rule, elementary a.c. generator.								
Lec 27-35	General concepts and definitions. Instantaneous current, voltage and power, R-, L-, C-, RL-, RC- and RLC- branches, Effective current and voltage: average values, form factor, crest factor, power real and reactive.								
36-42	Introduction to vector algebra. Impedance in polar and Cartesian forms. Sinusoidal single- phase circuit analysis. Impedance in series, parallel branches, series-parallel circuits.								

	Network analysis – Thevenin's theorem.									
	Balanced p	ooly phase circuits: three p								
	wire syste	m of generated emfs, the								
	three wire	e systems, balanced w								
	halanced	delta loads power in								
	systems n	ower factor Balanced th								
	systems, p	ower factor. Balanced th	nee phase							
	circuit anal	ysis and power measureme	nt.							
ASSESSMENT STRATEGY										
	COs	Assessment Method	(100%)	Remarks						
		Class Assessmen	t							
	CO 1	CI	20							
	CO 2	Class	20							
	CO 3	- Observations/Assignme nts	20							
	CO4		20							
	001	Fyom	20							
	CO 1	Exam	6 0							
			00							
		CT/Mid/Final Exam	80							
	CO 3		80							
	CO 4		80							
REFERENCE BOOKS										
1. Introductory Circuit Analysis – R. L. Boylestad.										

Introductory Circuit Anarysis – K. L. Boylestad.
 Introductory Circuit for Electrical & Computer Engineering – James W. Nilson.
 Alternating Current Circuits – Russel M Kerchner and George F Corcoran.

Fall Semester L-1, T-II

COURSE INFORMATION											
Cours	e Code	EECE 173		Lectur	re Contact H	lours	3.00				
Cours	e Title	Electrical and Electron	ics Technolog	y Credit	Credit Hours 3.0						
PRE-	PRE-REQUISITE										
EECE-159											
CUR	RICULU	M STRUCTURE									
Outco	ome Based	Education (OBE)									
SYNC	OPSIS/RA	TIONALE									
This of	course giv	ves idea about basic circ	uit solution m	ethods, intro	oduction to	electrical	l machines,				
basics	of domes	tic electrical installations,	diodes, transd	ucers, amplif	fier, rectifier	etc.					
OBJE	ECTIVE										
1.	This co	urse gives idea about b	basic circuit se	olution meth	nods, introd	uction to	o electrical				
	machine	s and basics of domestic e	electrical instal	lations.							
2. Analyze the general and special-Purpose diode circuits.											
3. Design biasing circuits for BJT.											
LEAI	RNING O	UTCOMES & GENERI	IC SKILLS			<u> </u>					
No.	(Course Outcome		Bloom's	KP CA	CP A	Assessment				

		Correspond ing PO	Taxonomy	Methods
CO1	Understand construction & working principle of 1-phase and 3-phase transformers. Understand Ideal and practical transformer and auto-transformer and its applications as well.	1,3		
CO2	Understand generation of rotating magnetic fields. Understand construction and working of 3-phase induction motor, 1-phase induction motor, DC motors& synchronous generators.	1,3		
CO3	Analyze the general –and special-Purpose diode circuits.	1		
CO4	Design biasing circuits for BJT	1		

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Single phase transformer-equivalent circuit and laboratory testing, introduction to three phase transformers. DC generator: principle, types, performances and characteristics. D C Motor: principles, types of motor, performances, speed control, starters and characteristics. A C Machines: three phase induction motor principles, equivalent circuit. Introduction to synchronous machines and fractional horse power motors.

Semiconductor diode, transistor characteristics, equivalent circuits, self-biasing circuits, emitter-follower amplifiers, push-pull amplifier. Introduction to silicon-controlled rectifier and its application. Oscilloscope. Transducers: strain, temperature, pressure, speed and torque measurements.

CO-PO MAPPING																
	1	1														
No		Course Learning (Jutcome			PF	ROC	BRA	M (CUC	ГСО	MES	S (PO)		
				1	2	3	4	5	6	7	8	9	10	11	12	
CO1 trans princ trans prac trans well		nciple of 1-phase and 3-phase nsformers. Understand Ideal and actical transformer and auto- nsformer and its applications as ell.				2										
CO2 Understand generation magnetic fields. construction and worki phase induction motor induction motor, DC synchronous generators		of rotating Understand ing of 3- ior, 1-phase C motors&	3		2											
CO3	Anal Purp	Analyze the general –and special- Purpose diode circuits.														
CO4	Design biasing circuits for BJT		3													
Justifica	Justification for CO-PO mapping:						1	1								
Mapping Corresponding			Justifications													
		Level of														
		matching														
CO1-PC	D1	3	Students wil	I gain basic knowledge about 1-phase and 3-phase								se				
CO1-PC)3	2	Students with needs with hase and 3-1	ill be able to design that will meet the specified appropriate consideration for the safety about 1- phase transformer along with auto transformer								ed 1-				
CO2-PC	D1	3	Students w	ill	gaiı	n ł	oasi	c .	kno	wle	dge	ab	out	const	ructio	n
			and principle	s of	ĎC	& A	Ce	lect	rica	l ma	achir	nes				
CO2-PC)3	2	Knowledge useful for pu	about DC & AC electrical machines will be public health and safety.)e			
CO3-PC	D1	3	Basic know	knowledge about general and special purpose diod								es				
		-	will be gaine	ined by the students												
CO4-PC	D1	3	Students wil	lents will be able to apply knowledge of biasing for BJ								Т				
			in solving	g circuits which will lead to solution of comple-							X					
TEACHING LEADNING STRATEGY																
Teaching and Learning Activities					Т				Eng	page	emen	t (hc	urs)			
Face-to-Face Learning										00.	42		(115)			
Self-Directed Learning										75						
Formal Asse		essment									5.5					
Total											122.	5				
TEACH	TEACHING METHODOLOGY															
Class Le	Class Lecture, Pop quiz, Case study, Problem solving															
COURSE SCHEDULE																
---	-----------	---	---	-----------------------	------------------------------	---------------	--	--	--							
	Lecture	Торіс				СТ										
	Lec 1-10	Single p testing, i	Single phase transformer-equivalent circuit and laboratory testing, introduction to three phase transformers.													
	Lec 11-18	Semicon circuits, push-pul	Semiconductor diode, transistor characteristics, equivalent circuits, self-biasing circuits, emitter-follower amplifiers, push-pull amplifier													
	Lec 19-26	A C Ma equivaled and fract	achines: three phase indent nt circuit. Introduction to ional horse power motors.	oction mo synchron	tor principle ous machine	s, es CT-3										
	Lec 27-35	General voltage branches form fact	t, 2- s,													
	36-42	Introduct application pressure,	Introduction to silicon-controlled rectifier and its application. Oscilloscope. Transducers: strain, temperature pressure, speed and torque measurements.													
ASSE	SSMENT ST	FRATEG	Y													
		COs	Assessment Method	(100%)	Remarks											
			Class Assessmen	t												
		CO 1	Class	20												
		CO 2	Observations/Assignme	20												
		CO 3	nts	20												
	CO 4 20															
		CO1														
REFERENCE BOOKS																
1 Electric Machines and Transformers – Irving L. Kosow																
2 Electrical Machines Fundamentals – Stephan I. Chapman																

2. Electrical Machines Fundamentals – Stephan J. Chapman.
 3. A Text Book of Electrical Technology (AC, DC Machines) –B L Theraja and A. K. Theraja.
 4. Electronic Divices and Circuit Theries – R. L. Boylsted.

Fall Semester L-1, T-II

COURSE INFORMATION									
Course Code Course Title	EECE 174 Electrical and Electronic Technology Sessional	Lecture Contact Hours Credit Hours	3.00 1.50						
PRE-REQUIS	ITE								
1. EECE 159 Fu	indamentals of Electrical Engineering								
2. EECE 173 EI	ectrical and Electronics Technology								
CURRICULUM STRUCTURE									
Outcome Based Education (OBE)									

SYNOPSIS/RATIONALE

Electrical Engineering lab is designed to impart into the students the basic concepts of electrical engineering encompassing the practical implementations of DC and AC circuits. At the beginning of this course, students will get to know the projection of fundamental DC circuit using the basic equipment along with the observation of the basic theorems as well as the AC circuit concepts will be experimented accompanying the showcase of various types of filter and their characteristics. In the following part of the lab, some basic electronics experiment using diode and transistor will be done. In the last part of the course, the students will be familiarized with various electrical machines like DC and Ac motor and generator.

OBJECTIVE

1. To introduce the students to basic DC circuit laws and solving of complex circuits using basic circuit theorems

- 2. To impart into the students with the AC circuit hardware construction and operation.
- 3. To familiarize the students with different type of filter construction and their characteristics.

4. To give in depth knowledge on the basic electronics circuit using diode and transistor.

To introduce the students to different type of Dc and AC motor and generators.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Correspondi ng PO	Bloom's Taxonomy	СР	CA	KP	Assess ment Method s
CO1	Achieving the quality to construct DC, AC and electric circuits and justify the basic laws as well as to modify the complex circuits into simple circuits.	9	A4			2	R, Q, T
CO2	Attaining the competency to reproduce the basic filters and to explain their characteristics.	10	Р3			3	R, Q, T
CO3	Acquiring the proficiency to demonstrate the DC and AC machine like motor and generator characteristics with basic component	9	A3	1		3	R, Q, T

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

In this course, students will perform experiments to practically verify the theories and concepts learned in EECE 159 and EECE 173 using different hardware equipment and simulation software.

CO-PO MAPPING																
										1						
						PR	ROG	RA	M	CUC	ГСО	MES	5 (PO)			
No.		Course Learning C	Jutcome	1	2	3	4	5	6	7	8	9	10	1 1	12	
CO1	Achieving the quality to construct DC, AC and electric circuits and justify the basic laws as well as to modify the complex circuits into simple circuits.															
CO2	Attai repro expla	ining the com oduce the basic fi ain their characteris	petency to llters and to stics.										2			
CO3	Acquiring the proficiency to demonstrate the DC and AC machine like motor and generator characteristics with basic 2															
Justific	ation	for CO-PO mapp	ing:													
Mappir	ng	Corresponding Level of	g Justifications													
CO1-PC	90		Students will	WO	rk in	tear	ns t	0.00	nst	ruct	the	circu	its			
CO2-PC)10	2	Students will	pre	sent	and	wri	te te	chr	ical	rep	orts	115			
CO3-PC)9	2	Students will	WO	rk in	tem	s to	per	for	n va	ariou	is exp	perime	etns		
								1								
TEACH	HING	LEARNING STR	ATEGY													
Teachin	g and	Learning Activitie	S									Eng	agem	ent (l	nours))
Face-to-	-Face	Learning														
-		e											1	.4		
	Practio	cal									-	Totol	2	28		
Self_Dir	rected	Learning										Total	. 4	-2		
	Prenar	ation of Lab Repor	rts										1	0		
	Prepar	ation of Lab Test											1	0		
	Prepa	aration of presentat	ion											5		
	Preparation of Quiz 10															
	Engagement in Group Projects 20															
Formal	Formal Assessment															
	Continuous Assessment 14 Final Ouiz 1															
Total	Total															
2.000											1		1			
ТЕАСИ	TEACHING METHODOLOGY															

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE S	CHEDULE
Week 1	Exp 1: Verification of KVL and KCL
Week 2	Exp 2: Verification of Thevenin's Theorem
Week 3	Exp 3: Familiarization with alternating current (ac) waves and study of RLC series circuit
Week 4	Exp 4: Different types of filters and its characteristics with different input frequency
Week 5	Exp 5: Study the diode characteristics and rectifier circuit
Week 6	Exp 6: Study of N-P-N CB (Common base) and CE (Common emitter) transistor characteristics
Week 7	Exp 7: Regulation of the Transformer in Various Loads
Week 8	Exp 8: Study the properties of Three-Phase Alternator in various loads
Week 9	Exp 9: Study the properties of DC Shunt Motor.
Week 10	Exp 10: Study the properties of DC Separately Excited and Self-Excited Shunt Generator.
Week 11	Exp 11: Study the properties of Squirrel-Cage Induction Motor.
Week 12	Quiz
Week 13	Lab test + Viva
Week 14	Presentation

ASSESSMENT STRATEGY

	Components	Grading	СО	Blooms Taxonomy
	Lab participation and		CO 1	C3, C5
	Papart	20%	CO 2	C1, P3
Continuo	Report		CO 3	C4
us A seasama			CO 1	C3, C5
Assessine $nt(400())$	Labtest-1,Labtest-2	30%	CO 2	C1, P3
III (4070)			CO 3	C4
	Project and Presentation	25%	CO4	A1, A2, A3, A4
			CO 1	C3, C5
Lab Quiz		25%	CO 2	C1, P3
			CO 3	C4
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

N/A

Fall Semester L-4, T-II

Course Code **IPE 463** Course Title CAD/CAM Lecture Contact Hours : 2.00 Credit Hours

: 2.00

PRE-REOUISITE

N/A

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To design, analyze and select commonly used robots and implement NC, CNC program based manufacturing using computer-controlled machines and rapid tooling techniques.

OBJECTIVE

- 1. To conduct study on Robot anatomy and drive systems of robots.
- 2. To expose students to servo drives using voltage, current and direct torque and PID control systems.
- 3. To introduce different motion control systems using various types of sensors, encoders and methods of integration by using PLCs.
- 4. To expose students to manual part programming using G and M Codes
- 5. To introduce machine programming using APT like programming languages
- 6. To expose students to programming of free form surfaces from CAD-CAM database for machining and rapid prototyping

LEAI	LEARNING OUTCOMES & GENERIC SKILLS									
No.	Course Outcome	Correspond ing PO	Bloom's Taxonomy	СР	CA	KP	Assessment Methods			
CO1	Explain robot anatomy and the degrees of freedom of industrial robots	1, 3, 5	C1,C2	1	1	1	T, Mid Term Exam, F			
CO2	Explain strategies for robot motion control under the application of different types of sensor, encoders and methods of integration	1, 3	C1,C2	1	1	1	ASG, Mid Term Exam, F			
CO3	Program PLC to Control coordinated motions of robot and write manual part program using G and M Codes	1, 3	C3,C4	3	2	5,6	ASG, Mid Term Exam, F			
CO4	Prepare part program using programming languages such as APT and Explain the morphology of part program development for complex surfaces using CAD-CAM software for machining and rapid prototyping applications	1, 3, 5	C6	3	3	6,7	T, ASG, R, F			

 $(CP-\ Complex\ Problems,\ CA-\ Complex\ Activities,\ KP-\ Knowledge\ Profile,\ T-\ Test\ ;\ PR-\ Project\ ;\ Q-\ Quiz;\ ASG-\ Assignment;\ Pr-\ Presentation;\ R-\ Report;\ F-\ Final\ Exam)$

C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create)

COURSE CONTENT

Robot: Robot anatomy, Drive systems of robots, Electrical and hydraulic systems, AC and DC drives, Servo drives using voltage control, current control and direct torque control, PID control systems and performance issues.

Feedback systems, Single loop and multi-loop, DSP based motion control systems.

Sensors for industrial robots, encoders, resolvers, hall-effect sensors, acoustic sensors, ultrasonic and optical/infrared sensors.

Elements of robot vision, Integration using PLCs, digital motion planning systems

Computer Control Machines: Introduction, classification, design features and control features of CNC machines; Programming: G and M Code programming, Offline (APT-like) programming; free form surface machining: Isoparametric, Isoplanar and Isoscallop machining strategies.

<u>CO-PO</u>	MAN	PING													
No		Course Learning (Jutcome	PROGRAM OUTCOMES (PO)											
10.		Course Learning C	Jutcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Expl degr robo	ain robot anator ees of freedom o ts	ny and the of industrial	3		3		3							
CO2	Expl contr diffe and t	Explain strategies for robot motion control under the application of different types of sensor, encoders and methods of integration				3									
CO3	Program PLC to Control coordinated motions of robot and write manual part program using G and M Codes			3		3									
CO4	Prepare part program using programming languages such as APT and Explain the morphology of part program development for complex surfaces using CAD-CAM software for machining and rapid prototyping applications			3		3		1							
T (10)			(3 - High, 2)	2- M	ediu	m, 1	-lov	v)	_	_	_	_	_		
Justific	ation	for CO-PO mapp	ing:												
Mappir	ng	Corresponding Level of matching	Justifications												
CO1-F	CO1-PO1 3 Understanding robot anatomy and the degrees of freedom Engineering fundamentals.						om of ience,								
CO1-PO3 3 Understanding robot anatomy and the degrees of free industrial robots students will be able to Design solution					freedo	om of ns for									

complex engineering problems and design systems, component						
		or processes. To design a robot students will need a	ppropriate techniques			
001 005	2	resources, and modern engineering and	d IT tools, including			
COI-PO5	3	prediction and modelling, to complex engi	gineering problems, with			
	an understanding of the limitations.					
		To understand robot motion control und	der the application of			
CO2-PO1	3	different types of sensor, encoders and i	nethods of integration			
	-	students will required knowledge of mather	matics, natural science,			
		Engineering fundamentals.	tor the application of			
		different types of sensor encoders and n	nethods of integration			
CO2-PO3	3	students will be able to Design solutions for	or complex engineering			
		problems and design systems, components	or processes.			
		Programing PLC to Control coordinated	motions of robot and			
CO3 PO1	3	write manual part program using G and M	M Codes, students will			
005-101	5	required knowledge of mathematics, natura	al science, Engineering			
		fundamentals.				
		Program PLC to Control coordinated moti	ions of robot and write			
CO3-PO3	3	manual part program using G and M Code	s, students will be able			
		systems, components or processes	ig problems and design			
	Preparing part program using programmi	ing languages, students				
CO4-PO1 3 will required knowledge of mathe			atural science,			
		Engineering fundamentals.				
		Preparing part program using programming	ng languages, students			
CO4-PO3	3	will be able to Design solutions for	complex engineering			
		problems and design systems, components	or processes			
		To prepare part program using programmi	ng languages, students			
CO4 PO5	1	angineering and IT tools including predic	sources, and modelling to			
04-105	1	complex engineering problems with an	understanding of the			
		limitations.	understanding of the			
TEACHING	LEARNING STR	RATEGY				
Teaching and	Learning Activitie	S	Engagement (hours)			
Ease to Ease	Loomina					
гасе-ю-гасе	Learning					
Lectur	42					
Practie	-					
Student-Centr	red Learning		-			
Self-Directed	Learning	~	40			
Revision 40						
Assignment P	Preparations		20			
Forma						
Contin	2					

Final Examination	3
Total	127

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Visualization using Computer Simulations, Assignments, Class Tests, Exams, Feedback at every step.

COURSE SCHEDULE

Week	Topics	ASSESSMENT
1	Introduction	
	Robots: types, uses and classification and Robot applications	Class Test 1, ASG,
2	Robot anatomy	F
	Axes system and Grippers	
3	Drive systems of robots: AC and DC drives,	
	Servo drives using voltage control, current control and direct	
	torque control,	
4	PID control systems and performance issues	
	Integration using PLCs	
	Digital motion planning systems	
5	Sensors for industrial robots, encoders	Class Test 2, ASG
	Resolvers, hall-effect sensors	PR F
	Acoustic sensors, ultrasonic and optical/infrared sensors,	
6	Elements of robot vision	
7	Integration using PLCs	
-	Digital motion planning systems	
8	Introduction to Automation, CAD/CAM/CAE: Overview of	
	product life cycle, Essential components of soft automation (CAD	
	and CAM).	
	NC Machine tool: Historical Development, Principle of Numerical	
	Control, Classification of Numerical Control, Numerical Control	
	System. Dringing of Numerical Control Classification of Numerical	
	Principle of Numerical Control, Classification of Numerical	
0	Condinate system NC Program storage modia	
9	Symbolic codes NC words part programming tool radius	Mid Term, F
	symbolic codes INC words, part programming, tool radius	
	G&M code applications and NC Par Programming examples and	
	problem solving	
10	APT programming features	
10	Definition of Geometry statements	
	Geometry statement (examples)	
11	Definition of Motion statements	
	Definition of Motion statements	
	Motion statement (examples)	Class Tast 2 ASC
12	Geometry definition for turning and 21/2 axis milling	D DD F
	Tool path generation, simulation and verification	Λ, ΓΛ, Γ
	free form surface machining	
13	Overview, specific, RP &M process,	

	Application of PD and M	Storag lithography pr	202088	
	Application of KI and WI,	3D Printing Direct T	Cooling oxemple	
14	Geometry input Support	SD Thhing, Direct T		_
14	Section to the all and for F	Structure, Slice and M	lerge	
	Software technology for R	RP&M and Review		
ASSES	SMENT STRATEGY			
	Asses	ssment Strategies		CO
	Components		Grading	0
				CO 1
		Test 1-3	20%	CO 3
				CO 4
	Continuous Assessment	Class Participation	5%	CO 2
	(40%)	Class I articipation	570	CO 1
				CO 1
		Mid term	15%	CO 2
				CO 3
				CO 1
	Final Exam		60%	CO 2
			0070	CO 3
				CO 4
	Total Marks	100%		
•		(CO = Course Outo	come)	
REFE	RENCE BOOKS			
1	CAD/CAM: Computer-aid	led Design and Manut	facturing - Mikell Gi	oover

- 2. CAD/CAM theory and practice Ibrahim Zeid
- 3. CAD/CAM/CIM P. Radhakrishnan, S. Subramanyan, and V. Raju

Fall Semester L-4, T-II

COURSE INFORMATION											
Course Code	IPE 464	Lecture Contact Hours	: 3.00								
Course Title	CAD/CAM Simulation sessional	Credit Hours	: 1.50								
PRE-REQUISITE											
Concurrent with IPE-463											
CURRICULUM STRUCTURE											
Outcome Based	Education (OBE)										
SYNOPSIS/RA	TIONALE										
The main aim	is the use of computer systems to aid	d in the creation, modification	, analysis or								
optimization of	an engineering design.										
OBJECTIVE											
1. Create 2	1. Create 2D and 3D computer drawings and models for manufacturing and prototyping.										
2. Evaluate	e mechanical designs and select proper a	access and materials for product	ion.								

3. Evaluate computer aided design models and assemblies based on critical thinking and

problem-solving skills.

4. Apply design principles and rationale in a realistic and original design project.

LEARNING OUTCOMES & GENERIC SKILLS														
LLAN	INING OUTCOMES & GEN	Correspondence	ndin	σ σ	Blo	om	·s	[Т		[
No.	Course Outcome	PO	ilaili	5	Tax	xonc y	om	CI	CP CA		KP	A	Assessmer Methods	
	Create 2D and 3D					Ċ6		1		1,3	1,2		R	
CO1	computer drawings and model for manufacturing	1, 3,	5											
	and prototyping.													
	Evaluate mechanical				C.	3, C	5	1,		1,2	5,6		R	
CO2	designs and select the	1, 3						2						
	for production													
	Evaluate computer aided					C5		1.		1	5.6		ASC	i.R
	design models and							2		-	0,0		1.000	,
CO3	assemblies based on	1,3	3											
	critical thinking and													
	problem solving skills.				<u> </u>		4	1	_	~			400	
CO4	Apply design principles	13	5		C.	3, C	4			5	2		ASG	, К
04	and original design project.	1, 3,	5, 5											
(CP-C	Complex Problems, CA-Compl	ex Activit	ies,	KP-	Kno	wlee	dge	Pro	file	, T –	Test	; PR	– Pro	oject;
$\dot{Q} - Q$	uiz; ASG – Assignment; Pr – H	Presentatio	n; Ŕ	- R	epor	t; F	– F	inal	Ex	am)		,		5
C1 - F	Remember, C2 – Understand, C	C3 - Apply	y, C4	I - A	Analy	yze,	C5	– E	valı	uate,	and	C6 –	Creat	te)
COUH	RSE CONTENT													
Introdu	uction to CAD/CAM Geor	netric mo	deli	nσ	Cor	nnu	ter	ora	nhia	rs 1	Produ	uct I	Desig	n and
develo	popment using CATIA. Future	direction	s fo	r C	AD/	CAI	M.	CA	D/C	CS, I	Pro	gram	ming	using
MAST	TERCAM, Solidworks CAD/C	AM packa	ige				,					0	υ	U
CO-P	O MAPPING													
No.	Course Learning Outco	ome			PR	ROG	RA	M (DU'	ГCO	MES	(PO)	
			1	2	3	4	5	6	7	8	9	10	11	12
COL	create 2D and 3D c	computer	2											
	manufacturing and prototyp	oing.	3											
	Evaluate mechanical desi	gns and												
CO2	select the proper acce	ess and		3	3									
	materials for production.													
	Evaluate computer aided	design												
CO3	models and assemblies b	ased on		3	3									
	solving skills	problem												
	Apply design principle	es and												
CO4	rationale in a realistic and	original	3		3									
	design project.													
	(3	R - High 2	(3 - High 2 - Medium 1 - low)											

Justification	for CO-PO mapp	ing:								
Mapping	Corresponding	Justifications								
	Level of									
	matching									
CO1-PO1	3	To Create 2D and 3D computer draw	wings and model for							
		manufacturing and prototyping students v	will require knowledge							
		of mathematics, natural science, engineerin	ng fundamentals.							
CO2-PO2	3	To evaluate mechanical designs, stude	nts need to Identify,							
		formulate, research literature and analyse	e complex engineering							
		problems.								
CO2-PO3	3	Students will evaluate mechanical designs	s and select the proper							
C02 D02	2	access and materials for production.	11 / 1 / 1 /							
CO3-PO2	3	To evaluate computer aided design mod	dels, students need to							
		identify, formulate, research interature	and analyse complex							
CO3 PO3	2	Students will evaluate computer aided	design models and							
05-105	5	assemblies based on critical thinking and p	roblem-solving skills							
CO4-PO1	3	To apply design principles and rationale in	o apply design principles and rationale in a realistic and original							
001101	5	design project students will require knowledge of mathematics								
		natural science, engineering fundamentals.	reage of muticinaties,							
CO4-PO3	3	Students will apply design principles and	rationale in a realistic							
		and original design project.								
TEACHING	LEARNING STR	RATEGY								
Teaching and	Learning Activitie	8	Engagement (hours)							
Face-to-Face	Learning									
Lectur	re		42							
Practi	cal / Tutorial / Stuc	lio	-							
Student-Centr	red Learning		-							
Self-Directed	Learning									
Non-f	ace-to-face learnin	g	40							
Revis	ion		20							
Assignment P	reparations		20							
Forma	al Assessment		2							
Contin	nuous Assessment		$\frac{2}{2}$							
Final .	Examination		3 127							
10181			127							

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Visualization using Computer Simulations, Assignments, Class Tests, Exams, Feedback at every step.

COURSE SCHEDULE

Week	Topics	Remarks
1	Introduction	
2	CATIA	Assignment (Extra)
3	CATIA	Submit Assignment 1

4	CATIA	Submit Assignment 2
5	CATIA	
6	Quiz 1	Submit Assignment 3
7	CATIA	Submit Assignment 4, 5
		20% Drawing of the presentation should be completed (will be
		discussed in class for specific need/struggle you are facing to
		draw the product assigned)
8	CATIA	Submit Assignment 6, Draft submission of the report
9	CATIA	Submit Assignment 7
10	Quiz 2	Submit Assignment 8
11	CATIA	Initial submission of the SolidWorks drawing (Group wise) for
		the presentation. At least 80% of the drawing should be
		completed by this time
12	CATIA	Submit Assignment 9, Submit an initial Draft of the
		Presentation
13	Presentation	Submit Assignment 10
14	Viva	

ASSESSMENT STRATEGY

Asses	sment Strate	egies	CO	Plaam's Taxonomy
Compo	nents	Grading		Bloom's Taxonomy
			CO 1	C6
	Weekly	200/	CO 2	C3, C5
	Reports	20%	CO 3	C5
			CO 4	C3, C4
Continuous Assessment (70%)	Class Participa tion		CO 1	C6
		400/	CO 2	C3, C5
		40%	CO 3	C5
			CO 4	C3, C4
	Presentat ion	10%	CO 4	C3, C4
	1		CO 1	C6
Einel D		200/	CO 2	C3, C5
Final R	eport	30%	CO 3	C5
			CO 4	C3, C4
Total N	Iarks	100%		
		(CO	= Course Outcome)	
FERENCE B	OOKS		,	

1. CAD/CAM Lab Manual Book by Sathish D

SpringSemester L-4, T-I

COURSE INF	ORMATION		
Course Code Course Title	: GEPM 467 : Project Management and Finance	Lecture Contact Hours Credit Hours	: 2.00 : 2.00
PRE-REQUIS	SITE		

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course has been designed to understand the overlapping connection between engineering and management with financial matters in an organization through the study of varied management practices and finance as an engineer.

OBJECTIVE

- a. This course has been designed to understand the overlapping connection between engineering and management with financial matters in an organization through the study of varied management practices and finance as an engineer.
- b. To identify the tools and techniques needed to lead any project to its intended conclusion.
- c. To introduce sales fundamentals include understanding the customer and the competition, sales strategy, sales management, product positioning, product life cycle, sales structures, margins, and prospecting for new customers.
- d. Explain how engineering projects that are delivered through the support of project management activities contribute to the overall success and strategy of an organisation

LEAF	RNING OUTCOMES & GI	ENERIC SKILLS						
No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods	
CO1	Develop in depth idea on mechanical project management and organization to perform the Management Functions.	PO1, PO11	C3	1	1	-	Q, ASG, F	
CO2	Compare between selected Theories of Management.	PO1	C4	1	2	1	Q, ASG, F	
CO3	Design nuclear project and to perform the functions in the Marketing Mix	PO2, PO3	C5	1	2	-	Q, F, CS	

CO4	Develop knowledge of effective material management; management and resource allocation; Engineering economy and assessment on ethical issues in business situations.	PO11	C6	2	3	1	Q, F, CS, Pr
-----	---	------	----	---	---	---	--------------

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- i. Unit Overview and Introduction to Project Management
- ii. The Organisation: strategy, structure, and culture
- iii. Project Planning, Scheduling, and Resourcing
- iv. Risk Management
- v. Building a Project Team
- vi. Cost Estimating
- vii. Managing Project Quality and Supply Chain Management

b. Detail Contents:

Importance of project management to engineers, project life cycle, main stages of project definition, links between the organization, organizational strategy, and project management, the concepts of organizational strategy, corporate governance, enterprise risk management, importance of project planning, the links between project scope, scope management, product breakdown structures and work breakdown structures, problems arising from resource scheduling and the approaches used to resolve the problems, development of a project network diagram, differences between risk and uncertainty, some common risk management mistakes in projects, Building a project team, the challenges and problems with building teams, and the reality of building a team in relation to prescribed theory, the importance of cost estimating and the different types of costs incurred on engineering projects, the benefits, limitations, and challenges of cost estimating, the different estimating techniques used in the project life cycle, outline of the cost estimating process, key concepts of project quality management (QM), the key causes of quality failures in projects

	CO-PU	MAPPING													
	No	Course Outcome	PROGRAM OUTCOMES (PO)												
-	No. Course Outcome	1	2	3	4	5	6	7	8	9	10	11	12		
	CO1	Develop in depth idea on mechanical project management and organization to perform the Management Functions	3										2		

CO2	Compare between selected Theories of Management.	3							
CO3	Design mechanical project and to perform the functions in the Marketing Mix		3	2					
CO4	Develop knowledge of effective material management; management and resource allocation; Engineering economy and assessment on ethical issues in business situations.							3	

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICAT	JUSTIFICATION FOR CO-PO MAPPING					
Mapping	Level of Matching	Justification				
		The knowledge of mathematics, science, and engineering fundamentals is required to develop in depth idea on				
CO1-PO1	3	Mechanical industrial management and organization to perform the Management Functions.				
CO1-PO11	2	In order to develop in depth idea on nuclear project management and organization to perform the Management Functions, it is required to demonstrate knowledge and understanding of engineering management principles and economic decision- making and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.				
CO2-PO1	3	The knowledge of mathematics, science, Engineering fundamentals is required to compare between selected Theories of Management.				
CO3-PO2	3	In order to design nuclear project and to perform the functions in the Marketing Mix, identification, formulation, research literature and analysis of complex engineering problems are required to reach substantiated conclusion using first principles of mathematics, sciences and engineering fundamentals.				
CO3-PO3	2	In order to design nuclear project and to perform the functions in the Marketing Mix, it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.				
CO4-PO12	3	In order to develop knowledge of effective material management; Students will learn Management and resource allocation; Engineering economy and assessment on ethical issues in Business situations, it is required to demonstrate				

	knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.		
TEACHING LEARNING STR	ATEGY		
Teaching and Learning Activities Engagement (hours)			
Face-to-Face Learning		28	
Self-Directed Learning		70	
Formal Assessment		6	
Total		104	

TEACHING METHODOLOGY

Class Lecture, Pop quiz, Case study, Problem solving

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
Class 1-5	Importance of project management to engineers, project life cycle, main stages of project definition	CT 01	
Class 6-10	Links between the organization, organizational strategy, and project management, the concepts of organizational strategy, corporate governance, enterprise risk management		
Class 11- 14	Importance of project planning, the links between project scope, scope management, product breakdown structures and work breakdown structures, problems arising from resource scheduling and the approaches used to resolve the problems, development of a project network diagram	CT 02	
Class 15- 18	Differences between risk and uncertainty, some common risk management mistakes in projects		
Class 19-22	Building a project team, the challenges and problems with building teams, and the reality of building a team in relation to prescribed theory	MT	
Class 23-25	the importance of cost estimating and the different types of costs incurred on engineering projects, the benefits, limitations, and challenges of cost estimating	CT 03	
Class 26-28	Outline of the cost estimating process, key concepts of project quality management (QM), the key causes of quality failures in projects	CT 04	

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessment		
1	Assignment	20	
2	Assignment	20	
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	80	
4	Final Exam, CT, Mid	80	

REFERENCE BOOKS

- 1. P. Kotler, K. L. Keller, *Marketing Management*, 15th ed., Pearson, 2016
- 2. D. H. Besterfield, G. Besterfield, *Total Quality Management*, 3rd ed,. Prentice Hall, 2002
- 3. J. Liker, *The Toyota Way: 14 Management Principles from the World's Greatest Manufacturer*, 1st ed., McGraw-Hill Education, 2004

Spring Semester L-4, T-I

COURSE INFORMATION							
Course Code	: GEEM 437	Lecture Contact Hours	: 2.00				
Course Title	: Engineering Ethics &	Credit Hours	: 2.00				
	Moral Philosophy						
PRE-REQUISITE							
None							

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

It is essential for professionals in any field to have an understanding of the ethical problems and principles in their field. But anyone, no matter what their job, must deal with many other professions as well. Part of professional ethics is the understanding of the ethics of other professions: how they interact and what can be expected from them as correct ethical behaviour. In turn, any professional will benefit from a critical scrutiny of their own ethics by those from other professions. The general principles of professional ethics will be examined, as well as the distinctive problems of the different fields. This course will help the mechanical engineering students to conceptualize the dynamics of ethical practice in the mechanical domain

OBJECTIVE

- 1. To inculcate a sense of social responsibility.
- 2. To develop a firm ethical base.
- 3. To make the students realize the significance of ethics in a professional environment related to Mechanical Engineering

LEARNING OUTCOMES & GENERIC SKILLS								
No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	КР	СР	CA	Assessment Methods	
CO1	Understand the theoretical aspects of ethics and moral philosophy in professional fields.	PO1	C2	1	1	-	Q, ASG, F	
CO2	Identify practical and legal problems commonly encountered by engineers in their professional field/industry	PO2, PO6	C3	1	1,2	-	Q, ASG, F	
CO3	Develop foundation knowledge of ethics to be applied in professional fields	PO8	C6	1	-	-	Q, F, CS	
CO4	Critically assess the codes of professional conduct and their implications in Mechanical Engineering Life	PO12	C5	1	2	-	Q, F, CS, Pr	

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- i. Introduction to ethics
- ii. Importance of Ethics in Mechanical Engineering
- iii. Engineering Ethics
- iv. Introduction to Philosophy of Engineering
- v. Ethical Issues in Engineering Practice

b. Detail Contents:

Introduction to ethics, history, evolution, need and importance of ethics in Mechanical Engineering

technology, ethical terminology; Introduction to the Engineering Ethics: purpose, objectives, scope, methods etc. Introduction to Philosophy of Engineering; Professional Engineering Codes, Codes of Ethics (IEB); Code of Ethics (ASME)Ethical problem solving techniques; Case study methodology, different case studies; The Rights and Responsibilities of Engineers; Ethical Issues in Engineering Practice; Ethics Issues in Mechanical Engineering; Safety, Risk and Liability; Trust and reliability.

CO-PO MAPPING													
NI-	Course Outcome	PROGRAM OUTCOMES (PO)											
INO.	Course Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Understand the theoretical aspects of ethics and moral philosophy in professional fields.	1											
CO2	Identify practical and legal problems commonly encountered by engineers in their professional field/industry		2				3						
CO3	Develop foundation knowledge of ethics to be applied in professional fields								3				
CO4	Critically assess the codes of professional conduct and their implications in Mechanical Engineering Life												1

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATI	JUSTIFICATION FOR CO-PO MAPPING					
Mapping	Level of Matching	Justification				
CO1-PO1	1	In order to understand the theoretical aspects of ethics and moral philosophy in professional fields, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to be applied.				
CO2-PO2	2	In order to be able to identify practical and legal problems commonly encountered by engineers in their professional field/industry identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.				
CO2-PO6	3	In order to be able to identify practical and legal problems commonly encountered by engineers in their professional field/industry application of reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex				

		engineering problems is required.				
CO3-PO8	3	In order to develop foundation knowledge of ethics to be applied in professional fields, application of ethical principles and commit to professional ethics and responsibilities and norms of engineering practice is required.				
CO4-PO12	1	In order to engage in lifelong learning through acquiring knowledge on legal and ethical aspects of professions of Mechanical Engineering, it is required to recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.				
TEACHING L	EARNING STR	ATEGY				
Teaching and L	earning Activities		Engagement (hours)			
Face-to-Face Le	earning		28			
Self-Directed Learning			70			
Formal Assessment			6			
Total			104			

TEACHING METHODOLOGY

Class Lecture, Pop quiz, Case study, Problem solving

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
	Introduction to ethics, history, evolution, need	CT 01	
Class 1-5	and importance of ethics in Mechanical		
	Engineering technology		
	Ethical terminology; Introduction to the		
Class 6-10	Engineering Ethics: purpose, objectives, scope,		
	methods etc		
Class 11- 14	Introduction to Philosophy of Engineering	CT 02	
	Professional Engineering Codes, Codes of		
Class 15-18	Ethics (IEB); Code of Ethics (ASME) Ethical		
	problem solving techniques		
Class 19-22	Case study methodology, different case studies	MT	
Class 22.25	The Rights and Responsibilities of Engineers;	CT 03	
Class 25-25	Ethical Issues in Engineering Practice		
Class 26 28	Ethics Issues in Mechanical Engineering;	CT 04	
Class 20-28	Safety, Risk and Liability; Trust and reliability.		

ASSESSMENT STRATEGY

COs	Assessment Method	Remarks	
	Class Assessment		
1	Assignment	20	
2	Assignment	20	

		Exam		
	1	Final Exam, CT	80	
	2	Final Exam, CT, MID	80	
	3	Final Exam, CT	100	
	4	Final Exam, CT, Mid	100	
REFERENCE BOO)KS			

Charles E. Harris, et el. *Engineering Ethics: Concepts and Cases*, Cengage Learning Boston, USA: 4th Edition, 2009.
 Charles B. Fleddermann, *Engineering Ethics*, 4th Edition, NewYork, USA: Mc-Grawhill: 2012.
 Davis, M., ed. *Engineering Ethics*. Farnham, United Kingdom Ashgate Publishing Co, 2005.

Fall Semester L-2, T-II

COURSE INFORMATION											
Course	e Code GELM 271		Lecture	Conta	ct Ho	urs	2.00				
Course	e Title Leadership and	Management	Credit H	ours			2.00				
PRE-REQUISITE											
N/A											
CURRICULUM STRUCTURE											
Outcome Based Education (OBE)											
SYNOPSIS/RATIONALE											
The course is designed to make students understand the overlapping connection between											
engine	ering and management in	an organization	through th	e stu	dy o	f vari	ed management				
practic	ces and leadership traits as an	n engineer.									
OBJECTIVE											
1.To introduce different management functions and approaches.											
2.To e	xpose students to different v	views and styles of l	eadership								
3.To u	inderstand how an organizat	tion functions collal	ooratively w	vith m	anage	ers and	d engineers.				
4.To u	inderstand various personalit	ty traits and its impa	act on leade	rship	and n	nanage	ement.				
LEAF	RNING OUTCOMES & G	ENERIC SKILLS									
			Bloom's				Assessment				
No.	Course Outcome	Corresponding	Taxonom	KP	CP	CA	Methods				
		PO	у				wicthous				
	Familiarize with the										
CO1	fundamental concepts of	9.10	C1 $C2$	1			O ASG E				
COI	leadership and),10	C1, C2	1			Q, A50,1				
	management skills										
	Understand the role and										
CO^{2}	contribution of a leader		O ASG E								
02	in achieving	2,11	C1, C2	1			Q, ADU,I'				
	organizational goals										

CO3	Understand the contribution of leadership traits and management skills in decision making and solving real life problems	2,8,12	C1, C2	1,7		Q, ASG,F
-----	---	--------	--------	-----	--	----------

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

a. Main Contents:

Introduction to Leadership and Management; Management Fundamentals; Leadership & Motivation; Organizational Management; Planning and goal setting; Control; Change and Innovation; Attitude; Personality; Perception and Individual Decision Making; Understanding Work Team; HR Management; Operations Management; Information Technology and Management; Case studies.

b. Detailed Contents:

and Introduction Leadership Management: Definition of leadership to and management; basic difference between a leader and a manager; relation of leaders and managers with respect to efficiency and effectiveness; qualities of leader and managers with examples from history. Management Fundamentals: Definition of management & manager; levels of management; management functions and skills; Mintzberg's managerial roles; Henri Fayol's management principles; strategic management. Leadership & Motivation: Motivation, Maslow's hierarchy needs; theory of X & Y; motivators and hygiene factors; goal setting theory; reinforcement theory; equity theory; expectancy theory; Leadership styles; leadership trait theory; managerial grid; contemporary leadership; conflicts negotiation; leadership issues in 21st century; cross cultural leadership; engineer as a leader and some simple case discussions on leadership (positive and toxic leadership) in Learning).Organizational Organization; the class (Interactive Management: departmentalization; chain of command; unity of command; cross functional area: authority; centralization and decentralization; traditional & contemporary organization; matrix project structure; learning structure; organizing collaboration. Planning and goal setting: Foundation of planning; goals of plan; types of goal; types of goal & plan; goal setting; MBO; well written goal. Control: Controlling process; controlling for organizational performance; types of control: (feed-forward, feedback & concurrent); balanced scorecard; contemporary issues in control; workplace concern & workplace violence. Change and Innovation: Change and innovation; internal and external for change; changing process; creativity vs innovation. Attitude: Components of Attitude; behaviour model and characteristics model; behaviour vs. attitude; job attitude; job involvement; job satisfaction and customer satisfaction. Personality: Personality determinants: heredity and five environment; Myers-Briggs Type Indicator; Big personality model; personality traits (core self-evaluation, Machiavellianism, narcissism, self-monitoring, risk taking, proactive personality).Perception and Individual Decision Making: Factors influencing perception; attribution theory; errors/biases in attribution; Factors of individual decision making; rational decision making; bounded rationality; satisfice; common errors in decision making; creativity in decision making. Understanding Work Team: Work group; work team; problem solving team; self-managed work team; cross functional team; virtual team;

team effectiveness; team challenges.HR Management: Process of Human Resource Planning; forecasting demand for labour; staffing; internal supply of labour; performance appraisal. Operations Management: Project managing basics; goals and boundary of project; WBS; scheduling a project; Demand and supply forecasting; inventory control. Information Technology and Management: Management Information System (MIS); Enterprise Resource Planning (ERP) -For introductory knowledge.

CO-PO MAPPING

NT		<u> </u>		PROGRAM OUTCOMES (PO)											
No.		Course Out	tcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Fam conc mana	iliarize with th epts of lea agement skills	e fundamental adership and									3	3		
CO2	Unde contr orga	Understand the role and contribution of a leader in achieving organizational goals										3		2	
CO3	Understand the contribution of leadership traits and management skills in decision making and solving real life problems				2						2				2
Justification for CO-PO mapping:															
Mapping Correspondi ng Level of matching					J	usti	fica	itioi	ıs						
CO1-PC	PO9 3 By familiarizing with the fundamental concepts of leadership management skills, Students will function effectively as individual, and as a member or leader in diverse teams and multi-disciplinary settings						o and s an nd in								
CO1-PC	010	3	By familiarizin management s complex engin and with societ write effective presentations, a	g w kills eerin ty at repo	ith t , St ng a t larg orts ive a	he fu tuden totivi ge, s and and 1	unda nts ities such des rece	ame wil wi as ign ive	ntal l c th bei doc clea	con comr the ng cum tr in	ncep nuni eng able enta	ots o cate inee to o tion	f lead effe ring o compi , mak ns.	lership ctivel comm rehenc e effe	o and y on unity l and ective
CO2-PC)9	3	Understanding organizational g an individual, a multi-disciplina	the goals and ary s	role s, Stu as a ettin	and uden mer gs	l co its w nbe	ntri /ill r or	buti be a lea	on ble der	of a to fu in c	lea incti livei	der in on eff rse tea	achie fective ams a	eving ely as nd in
CO2-PC	011	2	2 Understanding the role and contribution of a leader in achieving organizational goals, Students will demonstrate knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work.						eving and omic						
CO3-PC	02	2 2 To understand the contribution of leadership traits and management skills in decision making and solving real life problems, students need to Identify, formulate, research literature and analyse complex engineering problems													
CO3-PC)8	2	Understanding	th	e a	contr	ribut	tion	0	of	lead	lersh	nip t	traits	and

		management skills in decision making, Students will apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice										
(CO3-PO122Students will recognize the need for understanding the contribution of leadership traits and management skills in decision making and solving real life problems, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.											
]	FEACHING I	LEARNING STRATEGY										
J	Teaching and Learning Activities Engagement (hours)											
F	Face-to-Face L	earning		28								
S	Self-Directed I	Learning		38								
F	Formal Assess	ment		5								
]	Total			71								
]	FEACHING N	METHODOLOGY										
(Class Lecture,	Pop quiz, Case study, Problem solving										
(COURSE SCI	HEDULE										
	Lecture	Торіс	СТ	Remarks								
	Lec 1-2	Introduction to Leadership and Management: Definition of leadership and management; basic difference between a leader and a manager; relation of leaders and managers with respect to efficiency and effectiveness; qualities of leader and managers with examples from history. Management Fundamentals: Definition of management & manager; levels of management; management functions and skills; Mintzberg'smanagerial roles; Henri Fayol's management principles; strategic management.	CT-1 CT-2									
	Lec 1-2 Lec 3-6	 Introduction to Leadership and Management: Definition of leadership and management; basic difference between a leader and a manager; relation of leaders and managers with respect to efficiency and effectiveness; qualities of leader and managers with examples from history. Management Fundamentals: Definition of management & manager; levels of management; management functions and skills; Mintzberg'smanagerial roles; Henri Fayol's management principles; strategic management. Leadership & Motivation: Motivation, Maslow's hierarchy needs; theory of X & Y; motivators and hygiene factors; goal setting theory; reinforcement theory; equity theory; expectancy theory Leadership & Motivation: Motivation, Maslow's hierarchy needs; theory of X & Y; motivators and hygiene factors; goal setting theory; reinforcement theory; equity theory; expectancy theory Leadership & Motivation: Motivation, Maslow's hierarchy needs; theory of X & Y; motivators and hygiene factors; goal setting theory; reinforcement theory; equity theory; expectancy theory 	CT-1 CT-2									

Lec 9-10	Organizational Management: Organization; departmentalization; chain of command; unity of command; cross functional area; authority; centralization and decentralization; traditional & contemporary organization; matrix project structure; learning structure; organizing collaboration. Planning and goal setting: Foundation of planning; goals of plan; types of goal; types of goal & plan; goal setting; MBO; well written goal.	
Lec 11-12	 Control: Controlling process; controlling for organizational performance; types of control: (feed-forward, feedback & concurrent); balanced scorecard; contemporary issues in control; workplace concern & workplace violence. Change and Innovation: Change and innovation; internal and external for change; changing process; creativity vs innovation. 	
Lec 13-14	Case Study – II : Planning and Goal Setting; A Managerial Approach: Engineer as Great Managers (Interactive Discussions in the Class) Attitude: Components of Attitude; behavior model and characteristics model; behavior vs. attitude; job attitude; job involvement; job satisfaction and customer satisfaction.	
Lec 15-16	Personality:Personalitydeterminants:heredity and environment;Myers-Briggs TypeIndicator;Bigfivepersonalitypersonalitytraits(coreself-evaluation,Machiavellianism,narcissism,self-evaluation,machiavellianism,narcissism,self-monitoring,risk taking,proactivepersonality).Perception and Individual Decision Making:Factorsinfluencingperception;attributiontheory;errors/biases in attribution	
Lec 17-18	Perception and Individual Decision Making:Factors of individual decision making; rationaldecision making; bounded rationality;satisfice; common errors in decision making;creativity in decision making.Case Study – III : A Case on DecisionMaking – Involves both leadership and	

	managerial skills (Interactive Discussion in the Class)	
Lec 19-20	Understanding Work Team: Work group; work team; problem solving team; self- managed work team; cross functional team; virtual team; team effectiveness; team challenges. HR Management: Process of Human Resource Planning; forecasting demand for labor; staffing.	
Lec 21-22	 HR Management: Internal supply of labor; performance appraisal. Operations Management: Project managing basics; goals and boundary of project; WBS; scheduling a project. 	
Lec 23-24	Operations Management: Demand and supply forecasting; inventory control. Exercise – Use of Microsoft Project (MSP) for scheduling a project at student level	
Lec 25-26	Case Study – IV: A case that covers all relevant theories taught throughout the course and involves both leadership and management issues, e.g., Columbia's Final Mission. (This may be given as group assignment followed by in class short presentations/discussions)	
Lec 27-28	Information Technology and Management: Management Information System (MIS); Enterprise Resource Planning (ERP) - For introductory knowledge.	

ASSESSMENT STRATEGY

Assessment s	strategies		CO	Bloom's
				Taxonomy
Components	Components Gra			
Continuous	Class test 1-2	20%	CO 1	C1-C2, P1
Assessment				
(40%)			CO 2	C1-C2
	Class	5%	CO 1	C1-C2, P1, A1
	Participation			
			CO 2	C1-2, P1-P2, A1
	Mid term	15%	CO 1	C1-C2, P1, A1
			CO 2	C1-C2, P1-P2, A1-

			A2						
		CO 3	C1-C2, P1-P2, A1-						
			A2						
Final Exam	60%	CO 1	C1-C2, P1, A1						
		CO 2	C1-C2, P1-P2, A1-						
			A2						
		CO 3	C1-C2, P1-P2, A1-						
			A2						
Total Marks	100%								
(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)									
REFERENCE BOOKS									

- 1. Engineering Management (Revised Edition) A.K. Gupta
- 2. Industrial Engineering and Production Management Martand T. Telsang
- 3. Leadership in Organizations Gary Yukl
- 4. Developing Management Skills David A. Whetten and Kim S. Cameron

Fall Semester L-4, T-2

COURSE INFORMATION											
Course Code	: GESL 407	Lecture Contact Hours	: 2.00								
Course Title	: Environment, Sustainability and Law	Credit Hours	: 2.00								
PRE-REQUISITE											
None											
CURRICULU	M STRUCTURE										
Outcome Based Education (OBE)											
SYNOPSIS/RATIONALE											

Although the electricity is now an indispensible part of our day to day life, it is very important to know the fact that the ways which are being used to generate electricity are either environment friendly or not. Additionally, it is imperative to understand the far-reaching consequences of the ways of generating electricity. Moreover, the confliction of the world environmental law should be avoided. This course introduces the students regarding the improvement of electrical technology with era and compares the impact of electricity on environment, human beings and global climates. In addition, student will be familiar with the sustainability and law.

OBJECTIVE

1. Make able the students to compare and classify the growth of electrical, electronic and communication technologies with change of era.

2. Impart the basic knowledge of improvement regarding electrical technology with the impact on environment, human beings and global climates.

3. Deliberate the message regarding the safety concepts, risk management, proactive management techniques for safety issue, safety standard and regulations for engineering works.

4. Impart the in-depth understanding about the legal issues regarding engineering,

environment, business and industrial law.

COUR	COURSE OUTCOMES & GENERIC SKILLS										
No.	Course Outcome	Correspon -ding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods				
CO1	Classify the growth of electrical, electronic and communication technologies with change of era.	4	C4	1		3	T, F				
CO2	Contrast improvement of electrical technology with the impact on environment, human beings and global climates.	7	C2	1		1, 3	T, Mid Term Exam, F				
CO3	Discuss safety concepts, safety and risk management, proactive management techniques for safety issue, safety standard and regulations for engineering.	6	C6	2		3	T, Mid Term Exam, F				
CO4	As a leader regarding appraise the legal issues regarding engineering, environment, business and industrial law, law of contract and elements for valid contract provided by the government.	12	C5	3	3	2,5	ASG, Pr, R				
(CP-0	Complex Problems, CA-Comple	x Activities, l	KP-Knowledge	Profil	le, T – Exom)	Test ;	PR – Project				
, Q = Q	2012, ASO – Assignment, FI – F RSE CONTENT		K - Keport, I' –	Fillal	Exam)	,					
Envi techn the e Envi hazar impro devel Safet work stand Lega contr good wage	ronment: Society and development of the environment, impact of the environment friendly technology, Terds, its remedy. Environmental ovement of working condition opment ty: Evolution of modern safet er health and safety, proactive ard and regulations for engg wo l Issues: Introduction to Legal I act, elements of valid contract s and higher purchase. Industris, legislation relating employment	nent; Growth human devel vironment up chnology and Pollution fro ns in the po y concepts, managemen rks, fire safet ssues for eng t, Consideration rial law in B tent in indust	of electrical, e lopment; Impac on human cha l development; m Power Plant ower plants. E safety and rish t techniques fo y, hazardous m ineering, busine ion, parties co angladesh: van tries, factories,	electro ct of I nges Techr s, E-v chviron k mar or safe aterial ess and mpete cious of shops	nic and EECE in the hology vaste r ment hageme by ma ls, Indu d indus nt to ordinations and a	d com techn- globa and e nanag and ent, p nagen ustrial l contra nce p agricu	munication ology upon al climates; nvironment ement. The sustainable roductivity, nent, safety Hygiene. aw, Law of act, Sale of ayments of lture, trade				

CO-PO	MAPPING												
				DE		D A	м		rco	ME)	
No.	Course Outcome	1	2	2		JKA		<u> </u>			5 (PU)	12
		1	2	3	4	5	0	/	0	9	10	11	12
COL	Classify the growth of electrical,				2								
COI	technologies with change of an				3								
	technologies with change of era.												
	Contrast improvement of electrical												
CO2	technology with the impact on							3					
	environment, numan beings and												
	Discuss cofety concerts cofety and												
risk management proactive													
CO3	management techniques for safety						3						
005	issue safety standard and						5						
	regulations for engineering												
	As a leader regarding appraise the												
	legal issues regarding engineering.												
CO4	environment. business and												•
	industrial law, law of contract and												3
	elements for valid contract provided												
	by the government.												
(Numeri	cal method used for mapping which indicate	s 3 a	s hig	h, 2 a	as me	ediu	m ai	nd 1	as lo	w lev	vel of r	natchi	ng)
ГЕАСН	ING LEARNING STRATEGY												
Feaching	and Learning Activities								H	Enga	geme	nt (ho	ours)
Face-to-F	Face Learning												
Lecture											2	8	
Practical	/ Tutorial / Studio										-		
Student-C	Centred Learning										-		
Self-Dire	cted Learning												
Non-face	-to-face learning										4	2	
Revision	of the previous lecture at home										1.	4	
	Preparation for final examination										14	4	
ormal A	ssessment										-		
Continuo	us Assessment										2	2	
Alid-Term 1													
Final Examination 3													
lotal											10	14	
FLACH	ING METHODOLOGY												
ecture a	nd Discussion, Co-operative and Colla	bora	tive	Met	hod	. Pr	oble	em I	Base	d Me	ethod		
	E SCHEDULE	0010			1100	,			2 450		liidu		

Week	Торіс	СТ
Week 1	Environment, society and development	
Class 1	Environment: society and development;	CT 1
Class 2	Growth of electrical, electronic and communication technologies and its	

	contribution to human development;	
Week 2	Impact of EECE	
Class 3	Impact of EECE technology upon the environment,	
Class 4	impact of the environment upon human changes in the global climates;	
Week 3	Friendly technology	
Class 5	Environment friendly technology,	
Class 6	Technology and development;	
Week 4	Environmental Pollution	
Class 7	Technology and environment hazards, its remedy.	
Class 8	Environmental Pollution from Power Plants,	
Week 5	Environmental Pollution	
Class 9	Environmental Pollution from Power Plants,	
Class 10	Environmental Pollution from Power Plants,	
Week 6	Waste management	
Class 11	E-waste management.	
Class 12	The improvement of working conditions in the power plants.	NC 1
Week 7	Sustainable development	M10- term
Class 13	Environment and sustainable development	torrin
Class 14	Safety: Evolution of modern safety concepts,	
Week 8	Health and Safety	
Class 15	Safety and risk management,	
Class 16	Productivity, worker health and safety,	
Week 9	Health and Safety	
Class 17	Proactive management techniques for safety management,	
Class 18	Safety standard and regulations for engineering works,	
Week 10	Health and Safety	
Class 19	Fire safety, hazardous materials	
Class 20	Industrial Hygiene	
Week 11	Legal Issues	
Class 21	Legal Issues: Introduction to Legal Issues for engineering, business and industrial law,	
Class 22	Law of contract, elements of valid contract,	
Week 12	Legal Issues	
Class 23	Consideration, parties competent to contract,	
Class 24	Sale of goods and higher purchase.	
Week 13	Industrial Law	
Class 25	Industrial law in Bangladesh: various ordinance payments of wages,	
Class 26	legislation relating employment in industries, factories, shops and agriculture	CT 2
Week 14	Industrial Law	
Class 27	Trade union act, industrial relation ordinance. Workman compensation	
Class 28	Review	

ASSESSMENT STRATEGY									
		-	CO	Blooms Taxonomy					
Cor	nponents	Grading	60	Bioonis Taxonomy					
	Class Test/	20%	CO1	C4					
Continuous	Assignment 1-3		CO2	C2					
Assessment	rissignment i 5		CO 3	C6					
(40%)	Class Participation	5%	CO 4	C5					
(1070)	Midtow	15%	CO 2	C2					
	what term		CO3	C6					
			CO 1	C4					
Ein	al Exam	60%	CO 2	C2					
			CO 3	C6					
			CO 4	C5					
Tot	al Marks	100%							
(CO = Course O	utcome, C = Cognitive	Domain, P	= Psychomotor	Domain, A = Affective Domain)					
TEXT & REFE	RENCE BOOKS								
1. Renewab	le Energy: Physics, E	ngineering,	Environmental	Impacts, Economics and Plannin	ng				
by Bent Sørenser	by Bent Sørensen								
2. Applications in Electronics Pervading Industry, Environment and Society by Alessandro De Gloria									

<u>CHAPTER 7</u> COURSE OFFERED BY ME TO STUDENTS OF OTHER DEPARTMENTS

7.1 List of courses offered by ME department to other departments

Course No	Course Name	Level- Term	Dept	Contact Hours	Credit Hours
ME 132	Workshop Technology Sessional	1-I	CE	3.0	1.5
ME 122	Fundamentals of Mechanical Engineering and Robotics Sessional	1-II	CSE	2.0	2.0
ME 283	Fundamental of Mechanical Engineering	2-I	EECE	3.0	3.0
ME 284	Fundamental of Mechanical Engineering Sessional	2-I	EECE	3.0	1.5
Shop 108	Workshop Technology Sessional-I	1-I	AE	0.75	1.50
Shop 112	Workshop Technology Sessional-II	1-II	AE	0.75	1.50
ME 249	Engineering Mechanics (Statics and Dynamics)	2-I	AE	4.0	4.0
ME 180	Basic Engineering Drawing	1-I	NSE	3.0	1.5
ME 253	Engineering Mechanics	2-I	NSE	3.0	3.0
ME 254	Engineering Mechanics Sessional	2-I	NSE	1.5	0.75
ME 142	Workshop Sessional	1-1	EWCE	3.00	1.5
ME 176	Workshop Practice	1-I	PME	3.0	1.5
ME 178	Basic Engineering Drawing and CAD	1-I	PME	3.0	1.5
ME 271	Fluid Mechanics	2-II	PME	3.0	3.0
ME 272	Fluid Mechanics Sessional	2-II	PME	1.5	0.75

7.2 Proforma of courses offered by ME department to other departments

Spring/Fall Semester L-1, T-I

COURSE INFORMATION										
Cours	se Code	ME 132			Lecture	e Conta	ct Hou	urs	: 3.00	
Cours	se Title	Workshop Technolo	ogy Sessional		Credit	Hours			: 1.50	
PRE-	REQUIS	SITE						l		
None										
CURRICULUM STRUCTURE										
Outco	ome Base	d Education (OBE)								
SYNC	OPSIS/R	ATIONALE								
To he is to perfor moldi and dr	elp the stu expose s rmance. T ing and a rilling ma	idents to explore vario students to the constru- This course is targeted lso to gain knowledge achine etc. and relate th	us welding techni uctions of different to verify the wo of different man nem with their the	ques and p ent mechan rking princ ufacturing oretical kno	ut theor ical ma iple of parts fr owledge	y in pr achines types c om latl	actice. and a of welc ne, dri	Our analy ding, lling	r mission yze their , casting, , milling	
OBJE										
1. To proces	sses requi	ferent manufacturing ired to manufacture a p	(machining, well product from the r	lding, foun aw materia	ldry, sh ls.	leet me	etal w	ork1	ng, etc.)	
2. To	use diffe	rent measuring, markir	ng, cutting tools us	sed in work	shop.					
3. Be	aware of	the safety precautions	while working in	workshop.						
LEAI	RNING (DUTCOMES & GEN	ERIC SKILLS							
No.	С	ourse Outcome	Corresponding PO	Bloom's Taxonom	y CP	CA	KP	Ass M	sessment lethods	
Be able to identify the basics of tools and equipment used in machining, welding, casting and molding1C31R, Q, I							, Q, LT			
CO2	Be able differen and mad select p specific processo	to compare between t types of welding chining processes and roper cutting tool for machining es.	2,3	C1, C3			1	R,	, Q, LT	

CO3	Find out about the importance of general safety precautions on different shop floors	1	C4		1	R, Q, LT
CO4	Develop practical skills by performing the experiments in different shops of workshop	5	C3		6	R, Q, LT

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, LT – Lab Test, PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Experiments:

- 1) Design and making of pattern for casting
- 2) Mold making, casting and assembly of final project
- 3) Study of electric arc welding
- 4) Study of Resistance Welding/Spot Welding
- 5) Study of Welding joints and welding positions
- 6) Study of Gas Welding/cutting
- 7) Study of TIG and MIG Welding
- 8) Manufacturing of machine component by using Lathe machine
- 9) Manufacturing of machine component by using Shaper machine
- 10) Manufacturing of a machine component by using Milling Machine
- 11) Manufacturing of a machine component by using Drilling Machine
- 12) Carpentry: Middle Lap T Joint, Cross Lap Joint, Mortise And Tenon T joint, Bridle T Joint

CO-PO MAPPING															
No		Course Learning (Jutcome			PI	ROC	GRA	M	OU	TCC	OME	S (PO))	
110.		Course Learning C	Jucome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be a tools mach mole	able to identify the basics of s and equipment used in chining, welding, casting and lding.													
CO2	Be diffe mach prop mach	Be able to compare between different types of welding and machining processes and select proper cutting tool for specific machining processes.			3	2									
CO3	Find gene diffe	nd out about the importance of neral safety precautions on ferent shop floors													
CO4	CO4 Develop practical skills by performing the experiments in different shops of workshop							3							
Justific	ation	for CO-PO mapp	ing:												
Mappin	ng	Corresponding Level of matching		Justifications											
CO1-PC)1	3	In order to knowledge of	ide f eng	ntify ginee	the the	e ba g fur	asic 1dar	s o nen	f to tal v	ools woul	and d be	equij requir	oment ed.	, the
CO2-PO2 3 In order engineerin			In order to engineering f	n order to perform the experiments, the knowledge of ngineering fundamentals would be required											
CO2-PO32In order t engineering			r to perform the experiments, the knowledge of ing fundamentals is also required.												
CO3-PC)1	3	For performing the experiments, safety precautions are essential in this laboratory.						s are	very					
CO4-PO5 3		Students will acquire knowledge on how to select and apply appropriate techniques, resources, and modern engineering tools.							apply ools.						

TEACHING LEARNING STRATEGY									
Teaching ar	nd Learning Activities	Engagement (hours)							
Face-to-Fac	e Learning								
Lect	ture	14							
Prac	etical	28							
		Total 42							
Self-Directe	ed Learning								
Prep	paration of Lab Reports	10							
Prep	paration of Lab Test	10							
Pre	eparation of presentation	5							
Pre	eparation of Quiz	10							
En	gagement in Group Projects	20							
Formal Ass	essment								
Con	14								
Fina	1								
Total	112								
TEACHIN	G METHODOLOGY								
Lecture foll Project Base	owed by practical experiments and discussion, Co-operative and ed Method	Collaborative Method,							
COURSE SCHEDULE									
Week-1	Expt-01: Design and making of pattern for casting								
Week-2	Expt-02: Mold making, casting and assembly of final project								
Week-3	Expt-03: Study of electric arc welding								
Week-4	Veek-4 Expt-04: Study of Resistance Welding/Spot Welding								
Week-5	Expt-05: Study of Welding joints and welding positions								
Week-6	6 Expt-06: Study of Gas Welding/cutting								
Week-7	Expt-07: Study of TIG and MIG Welding								
Week-8	Expt-08: Manufacturing of machine component by using Lathe machine								
Week-9	Expt-09: Manufacturing of machine component by using Shaper machine								
Week-10	Expt-10: Manufacturing of a ma	achine component by using Milling Machine							
----------------	--------------------------------	--	--	--	--	--	--	--	--
Week-11	Expt-11: Manufacturing of a ma	achine component by using Drilling Machine							
Week-12	Expt-12: Carpentry: Middle L	ap T Joint, Cross Lap Joint, Mortise And Tenon T							
	joint, Bridle T Joint								
Week-13	Viva								
Week-14	Quiz Test								
ASSESSM	SSESSMENT STRATEGY								
	Components	Grading							
Continu	Lab participation and Report								
		30%							
ous Assessm									
ent									
(60%)	Labtest-1, Labtest-2	30%							
Lab Quiz		40%							
	Total Marks	100%							

REFERENCE BOOKS

1. Machine Shop Practice – James Anderson, W. A. Chapman.

2. Callister W. D., Material Science & Engineering, John Wiley & Sons.

Spring/Fall Semester L-1, T-II

COURSE INFORMATION									
Course Code	ME 122	Lecture Contact Hours	: 4.00						
Course Title	Fundamentals of Mechanical	Credit Hours	: 2.00						
	Engineering and Robotics Sessional								
PRE-REQUISIT	TE								
None									

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To introduce the students with various fields of Mechanical Engineering with a special consideration to the fields relevant to the computer science and engineering discipline. A good number of theory based and lab based sessions are included to enhance the confidence of the students in this branch of engineering.

OBJECTIVE

1. To make the students familiar to with engine and its various features

2. To make the students understand various types of power plant

3. To introduce the students to various heat transferring devices

4. To make the students knowledgeable with power and motions transferring element used in robot

design

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Corresponding PO	Bloom's Taxonomy	СР	CA	KP	Assess ment Metho ds
CO1	Have theoretical and practical understanding of vehicle components and control	1, 2	C2, C3, P3			3	Q, ASG, F, R
CO2	Have introductory theoretical and practical knowledge of power plant and their main components.	1	C2			4	Q, ASG, F
CO3	Demonstrate fundamental ideas about heat transferring devices	1, 3	C2, P3			4,5	Q, ASG, F, R
CO4	Demonstrate basic knowledge about power transferring elements and components of robot.	1, 2	C3, P3			4	ASG, R
(CP-C	Complex Problems, CA-Complex	Activities, KP-Ki	nowledge Profil	e, T –	Test;	PR - I	Project ;

Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

a. Main Contents:

- 1. IC Engine, Automobile, Hybrid and Electric Vehicle
- 2. Power plant
- 3. Heat Transfer and equipment
- 4. Pump, Compressor, Valve
- 5. Kinematics of Rigid body
- 6. Power transferring devices
- 7. Robotics and Control

b. Detail Contents:

1. IC Engine, Automobile, Hybrid and Electric Vehicle — Types of IC Engine, Operating principle, thermodynamic cycle, Valve timing diagram, VVTi, ECM, Sensors used in modern vehicle, Hybrid Technology, Electric vehicle.

Lab experiment 01: Study of various components of IC Engine and their operation

Lab experiment 02: Study of Power train in automobile.

2. Power plant — Types of power plant, Introduction to Coal based, Gas based and Nuclear power plant, Control system of power plant, Steam generator, Cooling tower.

Lab experiment 03: Study of cooling tower efficiency.

3. Heat Transfer and equipment— Modes of heat transfer, Heat transfer using finned surface, Thermo-electric cooling, Heat pipe, Cooling of microchip and processor.

4. Pump, Compressor, Valve – Centrifugal pump, Positive displacement pump, Hydraulic and pneumatic actuator, Control valve (Pressure, flow and direction control valve)

Lab experiment04: Study of Injection molding machine and its control system

5. Kinematics of Rigid body – Truss, Frame, Kinematic linkage,

6. Power transferring device – Belt-pulley, Various types of gear and gear train, Fluid Coupling, CVT

Lab experiment 05: Study of various types of gear and their application.

7. Robotics – Introduction to Robotics, Plane, rotational and spatial motion with applications to manipulators, Geometric configurations, arms and grippers, Control system of robots.

СО-РО	MAI	PPING													
						PF	ROG	GRA	M	OU	ГСО	MES	5 (PO)		
No.		Course Learning C	Jutcome	1	2	3	4	5	6	7	8	9	10	1 1	12
CO1	Have know and	e theoretical ar wledge of vehicle control	d practical components	3	2										
CO2	Have introductory theoretical and practical knowledge of power plant and their main components.			3											
CO3	3 Demonstrate fundamental ideas about heat transferring devices			3		1									
CO4 Demonstrate basic knowledge about power transferring elements and components of robot.			3	3											
Justification for CO-PO mapping:															
Mapping Corresponding Level of matching							Jus	tifi	cati	ons					
CO1-PC	D1 3 Students will have both theoretical and practical knowled regarding engine and vehicle components and operation that wimpart both knowledge from basic science and engineer practice					vledge at will eering									
CO1-PC	02	2	Students wi regarding en impart both practice	ll ha gine kno	ave and owle	botł veh dge	n th icle fro	con con m	etic npc bas	al a onen ic	and its ai scier	prac nd op nce	tical peratic and e	know on tha engine	vledge at will eering
CO2-PC	01	3	Students wil engineering operation	l ha prac	ve tł ctice	neoro s oi	etica n p	al k owe	now er p	vled olan	ge a t co	s we mpo	ell as onents	estab and	lished their
CO3-PC	01	2	Students wil engineering devices	l ha prac	ve tł tices	on	etica vari	al k ious	now he	/led at ti	ge a ransf	s we ferrin	ell as on a second s	estab nniqu	lished ie and
CO3-PC	03	1	Students will have and use knowledge on cooling tower that guide the design of cooling tower in real field					r that							
CO4-PC	D 1	3	Students wi designing rol	ill l bots	nave and	kn vari	owl ous	edg mai	e o nipu	on llate	engi or	neer	ing p	oracti	ce in
CO4-PC)2	3	Student will structure	lear	n tec	hniq	ue	to p	erfo	orm	ana	lysis	of sin	mple	robot

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	56
Self-Directed Learning	25
Formal Assessment	5.5
Total	96.5

TEACHING METHODOLOGY

Class Lecture, Lab experiment, Report, Problem solving

COURSE SCHEDULE

Week	Торіс	СТ	Remarks
Class 1 – 8	IC Engine, Automobile, Hybrid and Electric Vehicle — Types of IC Engine, Operating principle, thermodynamic cycle, Valve timing diagram, VVTi, ECM, Sensors used in modern vehicle, Hybrid Technology, Electric vehicle. Lab 01 & 02		
Class 9 – 14	Power plant — Types of power plant, Introduction to Coal based, Gas based and Nuclear power plant, Control system of power plant, Steam generator, Cooling tower. Lab 03	CT-1	
Class 15 - 18	Heat Transfer and equipment— Modes of heat transfer, Heat transfer using finned surface, Thermo-electric cooling, Heat pipe, Cooling of microchip and processor.	CT-2	
Class 19 - 24	Pump, Compressor, Valve – Centrifugal pump, Positive displacement pump, Hydraulic and pneumatic actuator, Control valve (Pressure, flow and direction control valve)		
Class 25 - 34	Kinematics of Rigid body – Truss, Frame, Kinematic linkage,	Mid-Term	
35-44	Power transferring device – Belt-pulley, Various types of gear and gear train, Fluid		

	Coupling, CVT		
	Lab 05		
Class 45-56	Robotics – Introduction to Robotics, Plane, rotational and spatial motion with applications to manipulators, Geometric configurations, arms and grippers, Control system of robots.	CT-3	

ASSESSMENT ST	RATEC	SY		
	COs	Assessment Method	(100%)	Remarks
		Class Assessme	nt	
	1	Assignment	20	
	2	Assignment	20	
		Exam		
	1	Final Exam, Report	80	
	2	Final Exam, Report, MID	80	
	3	Final Exam, Report	100	
	4	Final Exam, Report, Mid	100	
REFERENCE BOO	OKS			
1. A Text Book of T	hermal l	Engineering - R S Khurmi	& J K Gup	ota
2. Heat Engines – D.	. A. Low	7		
3. Thermal Engineer	ring- Ma	hesh M Rathor		
4. Lab sheet				
REFERENCE SIT	E			

N/A

Spring Semester L-2, T-1

COURSE INI	FORMATION		
Course Code	ME 283	Lecture Contact Hours	: 3.00
Course Title	Fundamental of Mechanical Engineering	Credit Hours	: 3.00

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To introduce the students with various fields of Mechanical Engineering with a special consideration to the fields relevant to the Electrical, Electronic and Communication engineering discipline.

OBJECTIVE

1. To introduce various energy sources available in the world, energy economics and energy savings

2. To introduce steam generating units with accessories and mountings

3. To introduce internal combustion engine and gas turbine and their applications

4. To introduce fluid mechanics and machinery like water turbine, pump, compressor etc.

5. To briefly introduce various type of power plants

6. To briefly introduce hybrid technology, electric car and robot

7. To briefly introduce psychrometry, refrigeration and air conditioning

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Corresponding PO	Bloom's Taxonomy	СР	CA	KP	Assess ment Metho ds
CO1	Demonstrate knowledge on various energy sources and energy economics	1	C1			3	Q, ASG, F
CO2	Demonstrate knowledge on various mechanical components in power plants	1	C2, C3			4	Q, ASG, F
CO3	Demonstrate knowledge on hybrid and electric car	1	C3			4	Q, ASG,

	technology					F
CO4	Perform basic oral and written technical communication according to the accepted standards of the mechanical engineering community	1	C2		4	ASG, Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Present, ation; R - Report; F – Final Exam)

COURSE CONTENT

a. Main Contents:

- 1. Energy sources, Energy economics
- 2. Steam generator
- 3. Internal combustion engine, Gas Turbine
- 4. Water turbine, Pump, Compressor
- 5. Power plant
- 6. Automobiles and Robotics
- 7. Air conditioning and Refrigeration

b. Detail Contents:

1. Various Energy Source — Renewable and nonrenewable energy sources and their applications, Energy economics and proper use.

2. Steam Generator – Various types of steam generator, Mountings and accessories, Rankin cycle, Introduction to steam table, Heat recovery steam generator.

3. Internal Combustion Engine, Gas Turbine — Operating principle of IC (both SI and CI) engine, Valve timing diagram, cycle diagram, relevant mathematics, Gas turbine operation, Components of GT, thermodynamic cycle, Application of SI, CI engine and GT in power generation. Hybrid technology – Various hybrid vehicles, Types, Applications

4. Water Turbine, Pump, Compressor- Introduction to water turbine, Kaplan turbine, Pelton wheel components and operation., study of centrifugal and axial flow machines, pumps, fans, blowers and compressors, study of reciprocating pumps..

5. Power plant – Basic of coal based, GT base, Combined cycle based and nuclear power plant

6. Automobiles and Robotics – Hybrid Technology, Electric Car, Introduction to robotics

7. Refrigeration and Psychrometry –Vapor compression and Absorption refrigeration, COP, Cycle, Psychrometric chart, Basic application of psychrometric chart, Basic of

air conditioning

CO-PO MAPPING

No		Course Learnine C				Pł	ROC	GRA	Μ	OU	TCC	ME:	S (PO))	
INO.		Course Learning C	Jutcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Dem ener econ	oonstrate knowledg gy sources a oomics	e on various nd energy	2											
CO2	Demonstrate knowledge on various mechanical components in power plants			3											
CO3	Demonstrate knowledge on hybrid and electric car technology			3											
CO4 Perform basic oral and written technical communication according to the accepted standards of the mechanical engineering community			2												
Justific	ation	for CO-PO mappi	ing:				·								
Mappin	MappingCorrespondingJustificationsLevel of matchingImatchingImatching														
CO1-PC)1	2	Students will have idea on various energy sources, ener economics and savings which will increase their knowledge prepare the framework for solving design problem				ergy ge to								
CO2-PC	01	3	Students will engineering power plant	l hav pract	ve th tices	on v	etica vario	l kr ous	now mea	ledg char	ge as nical	s wel com	ll as e poner	stabli nts use	shed ed in
CO3-PC	D1	3	Students will engineering p	l hav	ve th tices	eore on h	etica 1ybr	l kr id a	now nd e	ledg elec	ge as tric o	s wel car te	ll as e echnol	stabli ogy	shed
CO3-PC	D1	2	By presenta practice com communicati	tion mur on n	of nicati	a p ion l s in	oarti but this	cula mai diso	ar s nly cipli	subj gai ine.	ect n kr	topic lowle	e stuc edge o	lents on vai	will rious
TEACHING LEARNING STRATEGY															
Teachin	g and	Learning Activitie	S									Enga	igeme	nt (ho	ours)
Face-to-	Face	Learning											42	2	
Self-Dir	Self-Directed Learning											75			

Formal Assessment 5.5						
Total		122.5	5			
TEACHING N	IETHODOLOGY					
Class Lecture, I	Pop quiz, Presentation, Problem solving					
COURSE SCHEDULE						
Lecture	Content		СТ			
L 1 – L 6	Renewable and nonrenewable energy sources and their applications, Energy economics and proper use.(
L 7 – L 15	Various types of steam generator, Mountings and accessories, Rankin cycle, Introduction to steam table, Heat recovery steam generator.					
L 16 – L 24	L 24 Operating principle of IC (both SI and CI) engine, Valve timing diagram, cycle diagram, relevant mathematics, Gas turbine operation, Components of GT, thermodynamic cycle, Application of SI, CI engine and GT in power generation. Hybrid technology – Various hybrid vehicles, Types, Applications					
L 25 - L 33 Water Turbine, Pump, Compressor- Introduction to water turbine, Kaplan turbine, Pelton wheel components and operation., study of centrifugal and axial flow machines, pumps, fans, blowers and compressors, study of reciprocating pumps		Mid				
L 34 – L 36	34 – L 36Basic of coal based, GT base, Combined cycle based and nuclear power plant					
L 37 – L 38	L 37 – L 38 Hybrid Technology, Electric Car, Introduction to robotics					
L 39 – L 42 Vapor compression and Absorption refrigeration, COP, Cycle, Psychrometric chart, Basic application of psychrometric chart, Basic of air conditioning.						

ASSESSMENT STR	RATEG	Ϋ́Υ			
	CO	Assessment Method	(100%)	Remarks	
	S)		
		Class Assessmen	t		
	1	Assignment	20		
	2	Assignment	20		
		Exam			
	1	Final Exam, CT	80		
	2	Final Exam, CT, MID	80		

	3	Final Exam, CT	100			
	4	Final Exam, CT, Mid	100			
REFERENCE BOOKS						
1. A Text Book of Th	1. A Text Book of Thermal Engineering - R S Khurmi & J K Gupta					
2. Heat Engines – D. A. Low						
3. Thermal Engineering- Mahesh M Rathore						

Spring Semester L-2, T-I

COURSE INFORMATION						
Course Code Course Title	ME 284 Fundamental of Mechanical Engineering Sessional	Lecture Contact Hours Credit Hours	3.00 1.50			
PRE-REQUISITE						
N/A						

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To help the students to explore various mechanical equipment and processes and put theory in practice. The students will be exposed to various equipment used in power plant for power generation like turbine, cooling tower, engine etc. and various properties like flash point fire point etc. Thy will be able to understand the working principle of various equipment first hand and compute their performance.

OBJECTIVE

1. Be able to familiarize the students with the basic mechanical equipment like engine, turbine, pump, refrigeration unit etc.

2. Be able to calculate various parameters of equipment like power generation, efficiency, flow rate etc.

3. To develop skills of handling basic mechanical equipment by engaging students in experiences with experimental processes and by growing the capability operate them.

4. Be able to impart practical knowledge on mechanical equipment crafting and develop collaborative learning skill.

LEAR	LEARNING OUTCOMES & GENERIC SKILLS							
No.	Course Outcome	Corresponding PO	Bloom's Taxonomy	СР	CA	KP	Assess ment Metho ds	
CO1	Be able to compute the various properties of fuels	1,4	C5, P4			4,8	ASG, R, F, Pr	
CO2	Be able to identify various component of engine and conduct performance analysis	1,5	C5, P4			4	ASG, R, F, Pr	
CO3	Be able to compute performance of fluid machineries like pump and turbine	1,5	C5, P4			4	ASG, R, F, Pr	
CO4	Demonstrate practical knowledge on psychrometric analysis of air and refrigeration system	1,4	C5, P4			4	ASG, R, F, Pr	

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

1 Introduction to the lab equipment's and safety measures

Expt-01: Determination of flash point of liquid fuel

Expt-02: Viscosity test of liquid substance

4 Expt-03: Study of refrigeration and air conditioning cycle.

Expt-04: Study of an automotive engine, different system and performance test

Expt-05: Determination of water flow rate

Expt-06: Study of sling Psychrometer

Expt-07: Performance test of a cooling tower.

Expt-08: Study of propeller turbine characteristics

CO-PO MAPPING

CO-PO MAPPING															
No.	Course Learning Outcome			PROGRAM OUTCOMES (PO)											
				1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be prop	able to compute erties of fuels	the various	3			2								
CO2	Be comp perfo	able to ident ponent of engine ormance analysis.	ify various and conduct	3				2							
CO3	Be a fluid turbi	ble to compute per machineries like ne	rformance of e pump and	3				2							
CO4	Demonstrate practical on psychrometric analys refrigeration system		knowledge sis of air and	3			2								
Justifica	ation	for CO-PO mapp	ing:												
Mappin	apping Corresponding Justifications Level of matching														
CO1-PC)1	3	In order to science and r	eval nath	uate ema	fue tics	l pı wou	rope ild t	ertie be re	s, t equi	he k red.	now	ledge	e of r	natural
CO1-PC)4	2	Students will process and o	l go obtai	thro ned	ough resu	soı lt fc	me or va	pub trio	lish us fi	ed li uel p	terat rope	ure to rties	o che	ck the
CO2-PC)1	3	In order to ex science and r	/alua nath	ate er ema	ngin tics	e pe wou	erfoi ild b	rma be re	nce, equi	, the red.	knov	vledg	ge of r	natural
CO2-PC)5	2	Modern tools	s wil	l be	used	l to	mea	sur	e th	e per	form	ance		
CO3-PC	01	3	In order to ex science and r	valu nath	ate p ema	ump tics	o pe wou	rfor Ild t	mar be re	nce, equi	the red.	knov	vledg	e of r	natural
CO3-PC)5	2	Modern tools	s wil	l be	usec	l to :	mea	sur	e th	e per	form	ance		
CO4-PC	01	3	In order to evaluate psychrometric properties of air and refrigeration system, the knowledge of natural science and mathematics would be required.					r and e and							
CO4-PC)4	2	Students will process and o	l go obtai	thro ned	ough resu	son lt fo	me	pub ario	lish us p	ed li sych	terat rome	ure to etric j	o che prope	ck the rties

TEACHING LEARNING STRATEGY					
Teaching and Learning Activities Engagement (how					
Face-to-Face Lea	rning				
Lecture	14				
Practical		28			
		Total 42			
Self-Directed Lea	urning				
Preparation of La	b Reports	10			
Preparation of La	b Test	10			
Preparati	on of presentation	5			
Preparati	on of Quiz	10			
Engagen	nent in Group Projects	20			
Formal Assessme	nt				
Continuous Asses	ssment	14			
Final Quiz	1				
Total 112					
TEACHING MI	ETHODOLOGY				
Lecture followed Method, Project I	l by practical experiments and discussion, Co-operati Based Method	ve and Collaborative			
COURSE SCHE	DULE				
Week 1	1 Introduction to the lab equipment's and safety measures	5			
Week 2	Expt-01: Determination of flash point of liquid fuel				
Week 3	Expt-02: Viscosity test of liquid substance				
Week 4	4 Expt-03: Study of refrigeration and air conditioning cyc	le.			
Week 5	Expt-04: Study of an automotive engine, different system	and performance test			
Week 6	Expt-05: Determination of water flow rate				
Week 7	Expt-06: Study of sling Psychrometer				
Week 8	Expt-07: Performance test of a cooling tower.				
Week 9	Expt-08: Study of propeller turbine characteristics				
Week 10	Practice Lab				
Week 11	Practice Lab				
Week 12	Lab Test + Viva				

Week 13	Quiz test	
Week 14	Presentation	

ASSESSMENT STRATEGY

COs	Assessment Method	Remarks	
	Class Assessme	nt	
1,2,3,4	Lab participation and Report	20	
1,2,3,4	Presentation	20	
	Exam	1	
1,2,3,4	Lab Test 1 & 2	30	
1,2,3,4	Final Exam	30	

REFERENCE BOOKS

Lab Handbook

Introduction to Thermal Engineering – R. S. Khurmi

REFERENCE SITE

N/A

Spring Semester L-1, T-1

COURSE INI	FORMATION			
Course Code	SHOP 108	Lecture Contact Hours	: 1.50	
Course Title	Workshop Technology Sessional – I	Credit Hours	: 0.75	
PRE-REQUIS	SITE			
Course Code:	N/A			
Course Title: N	N/A			
CURRICULU	J M STRUCTURE			
Outcome Base	d Education (OBE)			
SYNOPSIS/RATIONALE				
Workshop is a place where students acquire knowledge on the operation of various processes involved in manufacturing and production. The workshop practical courses make students competent in handling practical work in engineering environment.				

OBJECTIVE

1. To know about Foundry Shop: Study of Foundry Shop: Patterns, Molds, Cores, create molding by using molding sand and analyze metal melting and Casting inspection of casting and casting defects.

2. To know about Electric arc welding, Gas welding, Metal Inert Gas (MIG) welding, Tungsten Inert Gas (TIG) welding and analyze the procedure of different welding.

3. To create a congenial environment that promotes learning, growth and imparts ability to work with multi-disciplinary groups in professional, industry and research organizations.

COURSE OUTCOMES & GENERAL DIRECT				
No.Course OutcomeCorresponding POBloom Taxonon	n's CP	CA	KP	Assessment Methods
Be able to construct mold by using 3 P4 molding sand and analyze metal melting and Casting inspection of casting and casting defects.			K5	R, Q, T , ASG, F
Be able to analyze about Electric arc welding, Gas CO2 welding, Metal Inert Gas (MIG) welding, Tungsten Inert Gas (TIG) welding and analyze the procedure of different welding.			K3	R, Q,T, F
(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)				

	COURSE CONTENT						
	Exp No	Exp Name					
	1.	Familiarization of Foundry Shop: Study of Foundry Shop: Patterns, Molds, Cores. Create molding by using molding sand.					
	2.	Analyze metal melting and Casting, inspection of casting and casting defects.					
	3.	Electric arc welding and analyze the procedure of arc welding. Resistance Welding and Spot Welding.					
ł	4.	Gas welding and analyze the procedure of Gas welding.					
	5.	Metal Inert Gas (MIG) welding and Tungsten Inert Gas (TIG) welding and analyze the procedure of these both					

SKILL MAPPING

No. Course Learning Outcome			PROGRAM OUTCOMES (PO)										
INO.	5. Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to construct molding by using mold sand and analyze metal melting and Casting inspection of casting and casting defects.			2									
CO2	Be able to analyze about Electric arc welding, Gas welding, Metal Inert Gas (MIG) welding, Tungsten Inert Gas (TIG) welding and analyze the procedure of different welding	diaata	3		ah	2				nd 1			val
of match	(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)												
TEACHING LEARNING STRATEGY													
Teaching and Learning Activities							Engagement (hours)						
Face-to-Face Learning													
Lecture					07								
Practical					14								
Total					21								
i Otai													

Self-Directed Learning	
Preparation of Lab Reports	05
Preparation of Lab Test	05
Preparation of presentation	03
Preparation of Quiz	05
Engagement in Group Projects	10
Formal Assessment	
Continuous Assessment	07
Final Quiz	01
Total	57

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE SCHEDULE

Week 1	Familiarization of Foundry Shop: Study of Foundry Shop: Patterns, Molds, Cores. Create molding by using molding sand.
Week 2	Analyze metal melting and Casting, inspection of casting and casting defects.
Week 3	Electric arc welding and analyze the procedure of arc welding. Resistance Welding and Spot Welding.
Week 4	Lab Test-1
Week 5	Gas welding and analyze the procedure of Gas welding.
Week 6	Metal Inert Gas (MIG) welding and Tungsten Inert Gas (TIG) welding and analyze the procedure of these both
Week 7	Lab Quiz

ASSESSMENT STRATEGY

Grading	CO	Blooms Taxonomy
25%	CO 1	P4/ Articulation
	CO 2	C4/Analyse
15%	CO 1	P4/ Articulation
	CO 2	C4/Analyse
20%	CO1	P4/ Articulation
	Grading 25% 15% 20%	GradingCO 25% CO 1 $CO 2$ CO 2 15% CO 2 20% CO 1

Final Evaluation (Exam/project/assignment)	30%	CO1, CO2,	C4/Analyse, P4/ Articulation				
Viva Voce/ Presentation	10%	CO1, CO2	C4/Analyse, P4/ Articulation				
Total Marks	100%						
(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)							
TEXT AND REFERENCE BOOKS							
1. Machine Shop Practice – James Anderson; W. A. Chapman.							
2. Shop Theory – Anderson & Tatro.							

Fall Semester L-1 T-II

COURSE INFORMATION						
Course Code Course Title	SHOP 112 Workshop Technology Sessional –II	Lecture Contact Hours Credit Hours	: 1.50 : 0.75			
PRE-REQUI	SITE					
Course Code: SHOP 108 Course Title: Workshop Technology Sessional –I						
Outcome Base	ed Education (OBE)					
SYNOPSIS/RATIONALE						
Workshop is a place where students acquire knowledge on the operation of various processes						
involved in manufacturing parts and production of samples. The workshop practical courses make						
students competent in handling practical work in engineering environment. This course gives						
undergraduates the opportunity to engage in machine shop operation under the supervision of						

qualified machine shop personnel. Students learn to operate the lathe, milling and drilling

machines. The course may be repeated for credit multiple times, either on different topics (e.g., CNC coding)

OBJECTIVE

- 1. To Know about Lathe machine, Milling machine, Shaper Machine, CNC Milling Machine and create part by doing different operations.
- 2. To learn to use CNC Milling machine to manufacture a part automatically by using a CAD drawing.

COU	COURSE OUTCOMES & GENERIC SKILLS								
No.	Course Outcome	Correspondi ng PO	Bloom's Taxonomy	СР	CA	KP	Assessment Methods		
CO1	Be able to demonstrate the use of Lathe machine, Milling machine, Shaper Machine, CNC Milling Machine	5	Р3			K6	R, Q, T, ASG, F		
CO2	Be able to analyze a job for CNC Milling machine to manufacture a part automatically by using a CAD drawing.	2	C4			К3	R, Q, T, F		

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Exp No	Exp Name
1.	Study of Lathe Machine and Its Various Operations in Manufacturing parts.
2.	Study of Milling Machine and Its Various Operations in Manufacturing gears.
3.	Study of Shaping Machine and Its Various Operations in Manufacturing grooves.
4.	Study of Drilling Machine and Its Various Operations.
5.	Study of CNC Machine and Its Various Operations in Manufacturing parts.

SKILL MAPPING

No	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
10.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to demonstrate the use of Lathe machine, Milling machine, Shaper Machine, CNC Milling Machine					2							
Be able to analyze a job for CNC Milling machine to manufacture a part automatically by using a CAD drawing3													
(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)													

TEACHING LEARNING STRATEGY				
Teaching and Learning Activities	Engagement (hours)			
Face-to-Face Learning				
Lecture	07			
Practical	14			
Total	21			
Self-Directed Learning				
Preparation of Lab Reports	05			
Preparation of Lab Test	05			
Preparation of presentation	03			
Preparation of Quiz	05			
Engagement in Group Projects	10			
Formal Assessment				
Continuous Assessment	07			
Final Quiz	1			
Total	57			
TEACHING METHODOLOGY				
Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method,				
Project Based Method				

COURSE	SCHEDULE
Week 1	Study of Lathe Machine and Its Various Operations in Manufacturing parts.
Week 2	Study of Milling Machine and Its Various Operations in Manufacturing gears.
Week 3	Study of Shaping Machine and Its Various Operations in Manufacturing grooves.
Week 4	Lab Test-1
Week 5	Study of Drilling Machine and Its Various Operations.
Week 6	Study of CNC Machine and Its Various Operations in Manufacturing parts.
Week 7	Lab Quiz

ASSESSMENT STRATEGY								
Components	Grading	CO	Blooms Taxonomy					
Conduct Lab Test/ Class Performance	25%	CO 1	P3/Precision					
Report Writing/Programming	15%	CO 1	P3/Precision					
Mid Term Evaluation (exam/project/assignment)	20%	CO1	P3/ Precision					
Final Evaluation (Exam/project/assignment)	30%	CO1, CO2	P3/Precision, C4/Analyse					
Viva Voce/ Presentation	10%	CO1, CO2	P3/Precision, C4/Analyse					
Total Marks	100%							

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT AND REFERENCE BOOKS

1.

Machine Shop Practice – James Anderson; W. A. Chapman.

2. Shop Theory –Anderson & Tatro.

Spring Semester L-2, T-1

COURSE IN	FORMATION		
Course Code Course Title	ME 249 Engineering Mechanics (Statics and Dynamics)	Lecture Contact Hours Credit Hours	4.00 4.00

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To provide the students with the basic knowledge in the mechanics of rigid body which will be helpful while studying strength of materials, aircraft structures etc.

OBJECTIVE

- 1. To be able to express and resolve the position and force into vector unit components.
- 2. To determine the forces in the members of trusses and frames using the method of joints and sections.
- 3. To draw and describe the free-body diagram and to solve the problems using the equations of equilibrium.
- 4. To determine to the location of centre of gravity and centric for a system and to determine the moment of inertia for an area.
- 5. To apply Newton's laws of motion and conservation principles to solve real life
- 6. To understand the principles and methods used in analyzing motion of a particle.

No	Course Outcomes	Corresponding	Bloom's	КÞ	СР	CA	Assessment
110.	Course Outcomes	РО	Taxonomy	K I	CI	CA	Methods
CO1	Explain basic kinematics concepts – displacement, velocity and acceleration (and their angular counterparts).	1	C1, C2	1			Q, ASG, F
CO2	Demonstrate use of basic dynamics concepts- Work- Energy principle, Impulse- Momentum principle to solve dynamics problems	2	C3, C4	1,2			Q, ASG, F

LEARNING OUTCOMES & GENERIC SKILLS

CO3	Applyscalarandvectoranalyticaltechniquesforanalyzingforcesinstaticallydeterminatestructures	5	C3	6	1,2	Q, F, CS
CO4	Evaluate equilibrium of particles and bodies in real world problems.	2	C4,C5	1,2	1,2	Q, F, CS, Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- i. Properties of forces, moments, couples and resultants;
- ii.Moment of inertia of areas and masses;
- iii. Principle of work, energy, impulse and momentum
- iv. System of particles;
- v. Kinematics of rigid bodies

b. Detail Contents:

Statics of particles and rigid bodies; Properties of forces, moments, couples and resultants; Analysis of two- and three-dimensional problems; Centroids of lines, areas and volumes; Forces in truss, frames, and cables; Friction; Moments of inertia of areas and masses; Relative motion.

Planar mechanisms, linkages, mobility; instant centers of rotation, Kennedy's theorem; Velocity and acceleration polygons; Euler's first law; angular momentum and Euler's second law.

Kinetics of particles: Newton 's second law of motion; Principles of work, energy, impulse and momentum; System of particles; Kinematics of rigid bodies;

Kinetics of plane motion of rigid bodies: forces and acceleration; Principles of work and energy.

CO-PO MAPPING

No	Course Outcome	PROGRAM OUTCOMES (PO)											
110.		1	2	3	4	5	6	7	8	9	10	11	12
	Explain basic kinematics concepts –												
	displacement, velocity and												
CO1	acceleration (and their angular	2											
	counterparts).												
CO2	Demonstrate use of basic dynamics concepts- Work-Energy principle, Impulse-Momentum principle to solve dynamics problems		3										
CO3	Apply scalar and vector analytical techniques for analyzing forces in statically determinate structures					2							
CO4	Evaluate equilibrium of particles and bodies in real world problems.		3										

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level of Matching	Justification
CO1-PO1	2	Student will gain knowledge and thus will be able to explain Kinematic concepts.
CO2-PO2	3	Students will be able to demonstrate the basics dynamics concept.
CO3-PO5	2	Students will be able to apply various analysing techniques.
CO4-P02	3	Student will learn how to evaluate equilibrium of particles.

TEACHING LEARNING STRATEGY					
Teaching and Learning Activities	Engagement (hours)				
Lecture	70				
Self-Directed Learning	84				
Formal Assessment	6				
Total	160				

TEACHING METHODOLOGY

Class Lecture, Pop quiz, Case study, Problem solving

COURSE SCHEDULE

Week-1	Торіс	СТ			
Class-1	Fundamental concepts and principles				
Class-2	Systems of units and conversion from one system of units to another				
Class-3	Forces in a plane				
Class-4	Forces on a particle: resultant of two forces				
Week-2	Statics of Particles				
Class-5	Addition of vectors				
Class-6	Resultant of several concurrent forces	CT-1			
Class-7	Class-7 Resolution of a force into components and rectangular components of a force: unit vectors				
Class-8	Equilibrium of a particle				
Week-3	Rigid Bodies: Equivalent Systems of Forces				
Class-9	Moment of a force about a point, given axis				
Class-10	Varignon's theorem				
Class-11	Moment of a couple				
Class-12	Reduction of a system of forces to one force and one couple				
Week-4	Equilibrium of Rigid Bodies				
Class-13	Equilibrium in two dimensions				
Class-14	Equilibrium of a two force body				
Class-15	Equilibrium of a three force body	Mid Exam			
Class-16	Equilibrium in three dimensions				
Week-5	Distributed Forces: Centroids and Centres of Gravity				
Class-17	Centre of Gravity of a two dimensional body				

Class-18	Determination of centroids by integration	
Class-19	Centre of Gravity of a three dimensional body	
Class-20	Determination of centroids of volumes by integration	
Week-6	Analysis of structures	
Class-21	Analysis of trusses by method of joints	
Class-22	Analysis of trusses by method of sections	
Class-23	Analysis of frames	
Class-24	Analysis of cables	
Week-7	Friction	
Class-25	Introduction	
Class-26	The Laws of Dry Friction, Coefficients of Friction	
Class-27	Angles of Friction	
Class-28	Problems involving Dry Friction	
Week-8	Distributed Forces: Moments of inertia	
Class-29	Moments of inertia of areas	
Class-30	Polar moment of inertia and radius of gyration of an area	CT 2
Class-31	Moments of inertia of a mass	C1-2
Class-32	Moments of inertia of composite bodies	
Week-9	Instant centres of rotation Kennedy's theorem Velocity and	
VICCA->	acceleration polygons	
Class-33	Instant centres of rotation, Kennedy's theorem, velocity and acceleration polygons	
Class-33 Class-34	Instant centres of rotation Kennedy's theorem	
Class-33 Class-34 Class-35	Instant centres of rotation, Reincury's theorem, Velocity and Kennedy's theorem Velocity and acceleration polygons	
Class-33 Class-34 Class-35 Class-36	Instant centres of rotation, Reincury's theorem, velocity and acceleration polygons Kennedy's theorem Velocity and acceleration polygons Velocity and acceleration polygons	
Class-33 Class-34 Class-35 Class-36 Week-10	Instant centres of rotation, Reincury's theorem, velocity and acceleration polygons Kennedy's theorem Velocity and acceleration polygons Velocity and acceleration polygons Euler's First Law, Angular Momentum and Euler's Second law	
Class-33 Class-34 Class-35 Class-36 Week-10 Class-37	Instant centres of rotation, Reincury's theorem, velocity and acceleration polygons Kennedy's theorem Velocity and acceleration polygons Velocity and acceleration polygons Euler's First Law, Angular Momentum and Euler's Second law Euler's first law	
Class-33 Class-34 Class-35 Class-36 Week-10 Class-37 Class-38	Instant centres of rotation, Reincury's theorem, velocity and acceleration polygons Kennedy's theorem Velocity and acceleration polygons Velocity and acceleration polygons Euler's First Law, Angular Momentum and Euler's Second law Euler's first law Angular momentum	
Class-33 Class-34 Class-35 Class-36 Week-10 Class-37 Class-38 Class-39	Instant centres of rotation, Reincury's theorem, velocity and acceleration polygons Kennedy's theorem Velocity and acceleration polygons Velocity and acceleration polygons Euler's First Law, Angular Momentum and Euler's Second law Euler's first law Angular momentum Angular momentum	
Class-33 Class-34 Class-35 Class-36 Week-10 Class-37 Class-37 Class-38 Class-39 Class-40	Instant centres of rotation, Reincury's theorem, velocity and Instant centres of rotation Kennedy's theorem Velocity and acceleration polygons Velocity and acceleration polygons Euler's First Law, Angular Momentum and Euler's Second law Euler's first law Angular momentum Angular momentum Euler's second law	СТ 3
Class-33 Class-34 Class-35 Class-36 Week-10 Class-37 Class-37 Class-38 Class-39 Class-40 Week 11	Instant centres of rotation, Kennedy's theorem, velocity and Instant centres of rotation Kennedy's theorem Velocity and acceleration polygons Velocity and acceleration polygons Euler's First Law, Angular Momentum and Euler's Second law Euler's first law Angular momentum Angular momentum Euler's second law Kinetics of Particles: Newton's Second Law	CT-3
Class-33 Class-34 Class-35 Class-36 Week-10 Class-37 Class-37 Class-38 Class-39 Class-40 Week 11 Class-41	Instant centres of rotation, Remitty's theorem, velocity and acceleration polygons Kennedy's theorem Velocity and acceleration polygons Velocity and acceleration polygons Euler's First Law, Angular Momentum and Euler's Second law Euler's first law Angular momentum Angular momentum Euler's second law Kinetics of Particles: Newton's Second Law Newton's second law of motion	CT-3
Class-33 Class-34 Class-35 Class-36 Week-10 Class-37 Class-37 Class-38 Class-39 Class-40 Week 11 Class-41 Class-42	Instant centres of rotation, Reinedy's theorem, velocity and Instant centres of rotation Kennedy's theorem Velocity and acceleration polygons Velocity and acceleration polygons Euler's First Law, Angular Momentum and Euler's Second law Euler's first law Angular momentum Euler's second law Kinetics of Particles: Newton's Second Law Newton's second law of motion Linear momentum of a particle : rate of change of linear momentum	CT-3
Class-33 Class-34 Class-35 Class-36 Week-10 Class-37 Class-37 Class-38 Class-39 Class-40 Week 11 Class-41 Class-42 Class-43	Instant centres of rotation, Kennedy's theorem, Velocity and Instant centres of rotation Kennedy's theorem Velocity and acceleration polygons Velocity and acceleration polygons Euler's First Law, Angular Momentum and Euler's Second law Euler's first law Angular momentum Euler's second law Kinetics of Particles: Newton's Second Law Newton's second law of motion Linear momentum of a particle : rate of change of linear momentum Equations of motion	CT-3

	momentum
Week 12	Kinetics of Particles: Energy and Momentum Methods
Class45	Kinetic energy of a particle: principles of work and energy
Class-46	Applications of principles of work and energy
Class-47	Principle of impulse and momentum
Class-48	Problems involving energy and momentum
Week 13	System of Particles
Class-49	Linear and angular momentum of system of particles
Class-50	Conservation of momentum of a system of particles
Class-51	Kinetic energy of a system of particles
Class-52	Principle of impulse and momentum of a system of particles
Week 14	Kinematics of rigid bodies
Class-53	Rotation about a fixed axis
Class-54	General plane motion
Class-55	Instantaneous centre of rotation in plane motion
Class-56	Absolute and relative acceleration in plane motion

ASSESSMENT STRATEGY

	Assessment Method	(100%)	Remarks
COs			
1	Assignment	20	
2	Assignment	20	
	Exam		
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	100	
4	Final Exam, CT, Mid	100	

REFERENCE BOOKS

Vector Mechanics for Engineers: Statics and Dynamics – Ferdinand P. Beer, E Russell Jr. Johnstone; McGraw-Hill Companies, 5th edition 1988.

- b. Engineering Mechanics Timoshenko, D H Young, J V Rao
- c. Engineering Mechanics Andrew Pytel, JaonKiusaloas

d. Engineering Mechanics, Statics and Dynamics – Joseph F Shelley; McGraw-Hill, 1980.

e. Engineering's Mechanics - J.L. Merian& LG Kraige

Spring/Fall Semester L-1, T-I

COURSE INFO	ORMATION								
Course Code	ME 180	Lecture Contact Hours	3.00						
Course Title	Basic Engineering Drawing	Credit Hours	1.50						
PRE-REQUISITE									
N/A									
CURRICULUM STRUCTURE									
Outcome Based Education (OBE)									
SYNOPSIS/RATIONALE									
This course is designed for learners to learn engineering drawing skills both manual and computer									
based as a means of accurately and clearly communicating ideas, information and instructions and									
use them to con	use them to communicate with others through engineering drawings and solve complex problems								
of real world.	of real world.								
ODIECTIVE									

OBJECTIVE

1. To enable students to acquire and use engineering drawing skills as a means of accurately and clearly communicating ideas, information and instructions.

2. To enable the students to read various professional drawing that will enhance their exposure to real engineering practices.

2. To enable students to acquire requisite knowledge, techniques and attitude required for advanced study of engineering drawing.

LEARNING OUTCOMES & GENERIC SKILLS Asses Bloom's sment Corresponding CP KP No. **Course Outcome** CA Taxonomy Meth PO ods Be able to prepare engineering 1 CO1 drawing of basic element using C3, A3 4 manual tools Be able to prepare engineering 1,5 CO2 drawing of basic element using C3. A3 4.6 computer software 2 4 CO3 C3, A3 Be able to identify and interpret

real life engineering drawings						
--------------------------------	--	--	--	--	--	--

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Introduction; Instruments and their uses; First and third angle projections; Orthographic drawings; Isometric views; Sectional views and conventional practices; Introduction to AutoCAD/Solid Works, Real life drawing inspection and identification

CO-PO MAPPING

No		Course Learning Outcome			PROGRAM OUTCOMES (PO)										
No. Course Learning C		Juicome	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	Be draw man	Be able to prepare engineering drawing of basic element using manual tools Be able to prepare engineering drawing of basic element using computer software													
CO2	Be draw com				3			3							
CO3	Be a life e	e able to identify and interpret real e engineering drawings			3										
Justific	ation	for CO-PO mapp	ing:						·						
Mapping Corresponding Level of matching							Jus	tifi	cati	ons					
CO1-PC	D1	3	In order to draw engineering drawing of various objects, the knowledge of practice in mechanical Engineering discipline would be required.												
CO2-PO1 2		In order to draw engineering drawing of various objects, knowledge of practice in mechanical Engineering discipl would be required.							s, the cipline						
CO2-PO5 3 Students will use AutoCAD / Solid Works software															
CO3-PC)1	2	In order to knowledge would be req	drav of p uire	v er oract d.	igine ice	erir in	ng o meo	drav char	ving nica	g of l Er	vari ngine	ous (ering	object g disc	s, the cipline

TEACHIN	G LEARNING STRATEGY	
Teaching an	d Learning Activities	Engagement (hours)
Face-to-Fac	e Learning	
Lecture		14
Practical		28
		Total 42
Self-Directe	d Learning	
Preparation	of Lab Reports	10
Preparation	of Lab Test	10
Pre	paration of presentation	5
Pre	paration of Quiz	10
Eng	gagement in Group Projects	20
Formal Asse	essment	
Continuous	Assessment	14
Final Quiz		1
Total		112
TEACHIN	G METHODOLOGY	
Lecture follo Project Base	owed by practical experiments and discussion, Co-operative and ed Method	Collaborative Method,
COURSE S	CHEDULE	
Weeks	Topics	Remarks
Week-1	Introduction	
Week-2	First and third angle projections	
Week-3	Orthographic drawings	
Week-4	Orthographic drawings	Mid-term
Week-5	Isometric views	
Week-6		
Week-7	Mid-term Exam	
Week-8	Sectional views and conventional practices	
Week-9	Solid Works Practice – Orthographic Drawing	Final Exam
Week-10	Solid Works Practice – Orthographic Drawing	
Week-11	Solid Works Practice – Orthographic Drawing	

Week-12	Actual drawing reading practice – Power plant layout, Cooling tower sectional view, Steam generator sectional view	
Week-13	Actual drawing reading practice – Pump cut sectional view, Welding joints ISO symbol, Fluid power and control ANSI symbol	
Week-14	Final Exam	

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessme	nt	
1,2,3,4	Lab participation and Report	20	
1,2,3,4	Presentation	20	
	Exam		
1,2,3,4	Lab Test 1 & 2	30	
1,2,3,4	Final Exam	30	

REFERENCE BOOKS

Lab Handbook

Mechanical Engineering Drawing – A C Mandal, M Quamrul Islam

REFERENCE SITE

N/A

Spring/Fall Semester L-2, T-1

COU	JRSE INFORMATION									
Course	e Code ME 253		Lecture C	ontact Hours	3.)0				
Course	e Title Engineering Mech	anics	s Credit Hours			3.00				
PRE-	REQUISITE									
None										
CURI	RICULUM STRUCTURE									
Outco	me Based Education (OBE)									
SYNC	DPSIS/RATIONALE									
Topro	wide the students with the bas	vic know	wledge in t	na machanica	ofrig	id bod	v whic	h will be		
helpfu	I while studying strength of m	naterial	s, aircraft st	tructures etc.	orng	lu Dou	y white			
0.0.10										
OBJE	CTIVE									
a)	To be able to express and i	resolve	the position	n and force in	to vec	tor un	it com	ponents.		
b)	To determine the forces in	the me	mbers of t	usses and fra	meeu	ising t	he me	thad of joints		
	and sections.	the me			unes e	ising i		unou or joints		
c)	To draw and describe the from	ee-body	y diagram a	and to solve t	he pro	blems	using	the equations		
,	of equilibrium.	-			1		U	1		
d)	To determine to the location	n of cer	ntre of grav	ity and centri	ic for a	a syste	em and	l to determine		
	the moment of inertia for an	area.								
LEAF	RNING OUTCOMES & GE	NERIC	C SKILLS							
No	Course Outcomes	Corre	esponding	Bloom's	KD	СР	CA	Assessment		
140.	Course Outcomes		PO	Taxonomy	K I	CI	CA	Methods		
	Explain basic kinematics									
CO1	concepts – displacement, velocity and acceleration		1	C1,C2	1			Q, ASG, F		
	(and their angular									
	counterparts).									
	dynamics concepts- Work-									
CO2	Energy principle, Impulse-		2	C3,C4	1,2			Q, ASG, F		
	Momentum principle to solve dynamics problems									
	Annly scalar and vector									
CO3	analytical techniques for		5	C3	6	12		O.F.CS		
	analyzing forces in		2		0	1,2		χ, ι, υ		
	statically determinate									

	structures					
CO4	Evaluate equilibrium of particles and bodies in real world problems.	2	C4,C5	1,2	1,2	Q, F, CS, Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; CS – Case study, F – Final Exam)

COURSE CONTENT

a. Main Contents:

- I) i. Properties of forces, moments, couples and resultants;
- II) . Moment of inertia of areas and masses;
- III) iii. Principle of work, energy, impulse and momentum
- IV) iv. System of particles;
- V) v. Kinematics of rigid bodies

b. Detail Contents:

Statics of particles and rigid bodies; Properties of forces, moments, couples and resultants; Analysis of two- and three-dimensional problems; Centroids of lines, areas and volumes; Forces in truss, frames, and cables; Friction; Moments of inertia of areas and masses; Relative motion.

Planar mechanisms, linkages, mobility; instant centres of rotation, Kennedy's theorem; Velocity and acceleration polygons; Euler's first law; angular momentum and Euler's second law.

Kinetics of particles: Newton 's second law of motion; Principles of work, energy, impulse and momentum; System of particles; Kinematics of rigid bodies;

Kinetics of plane motion of rigid bodies: forces and acceleration; Principles of work and energy.

CO-PO MAPPING

No.	Course Outcome	PROGRAM OUTCOMES (PO)))						
	course outcome		2	3	4	5	6	7	8	9	10	11	12
	Explain basic kinematics concepts –												
	displacement, velocity and												
CO1	acceleration (and their angular	2											
	counterparts).												
CO2	Demonstrate use of basic dynamics concepts- Work-Energy principle, Impulse-Momentum principle to solve dynamics problems		3										
CO3	Apply scalar and vector analytical techniques for analyzing forces in statically determinate structures					2							
CO4	Evaluate equilibrium of particles and bodies in real world problems.		3										

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level of Matching	Justification
CO1-PO1	2	Student will gain knowledge and thus will be able to explain Kinematic concepts.
CO2-PO2	3	Students will be able to demonstrate the basics dynamics concept.
CO3-PO5	2	Students will be able to apply various analysing techniques.
CO4-P02	3	Student will learn how to evaluate equilibrium of particles.

TE	ACHING LEA	RNING STRATEGY					
Tea	aching and Lear	ning Activities I	Engagement (ho	ours)			
Fac	e to Face Learn	ing	42				
Sel	f-Directed Lear	ning	76				
			10				
Formal Assessment							
Tot	tal		130				
TE	ACHING ME	THODOLOGY					
Cla	ss Lecture, Pop	quiz, Case study, Problem solving					
CO	OURSE SCHEI	DULE					
	Lecture	Торіс	СТ				
		Fundamental concepts and principles					
	01-03	Systems of units and conversion from one system of units another	to				
	01-03	Forces in a plane					
		Forces on a particle: resultant of two forces					
		Statics of Particles					
		Addition of vectors					
	04-06	Resultant of several concurrent forces	CT-	1			
		Resolution of a force into components and rectangular components of a force: unit vectors					
		Equilibrium of a particle			T		
		Rigid Bodies: Equivalent Systems of Forces					
	04-06	Moment of a force about a point, given axis					
	07-09	Varignon's theorem					
		Moment of a couple					
		Reduction of a system of forces to one force and one couple	le				
		Equilibrium of Rigid Bodies					
		Equilibrium in two dimensions					
	10-12	Equilibrium of a two force body					
10-12	Equilibrium of a three force body	MidEx	zom				
		Equilibrium in three dimensions		am			
		Distributed Forces: Centroids and Centres of Grav	rity				
	13-15	Centre of Gravity of a two dimensional body					
		Determination of centroids by integration					
	Centre of Gravity of a three dimensional body						
-------	---	------	--	--			
	Determination of centroids of volumes by integration						
	Analysis of structures						
	Analysis of trusses by method of joints						
16-18	Analysis of trusses by method of sections						
	Analysis of frames						
	Analysis of cables						
	Friction						
	Introduction						
19-21	The Laws of Dry Friction, Coefficients of Friction						
	Angles of Friction						
	Problems involving Dry Friction						
	Distributed Forces: Moments of inertia						
	Moments of inertia of areas						
22-24	Polar moment of inertia and radius of gyration of an area						
	Moments of inertia of a mass	CT-2					
	Moments of inertia of composite bodies						
	Instant centres of rotation. Kennedy's theorem. Velocity and						
	acceleration polygons						
	Instant centres of rotation						
23-27	Kennedy's theorem						
	Velocity and acceleration polygons						
	Velocity and acceleration polygons						
	Fuler's First Law Angular Momentum and Euler's Second						
	law						
	Euler's first law						
28-30	Angular momentum						
	Angular momentum						
	Fuler's second law						
	Kinotics of Particles: Newton's Second Law	CT-3					
	Numerics of Lances, Newton's Second Law						
	Newton's second law of motion						
31-33	Linear momentum of a particle : rate of change of linear momentum						
51-55	Equations of motion						
	A preser momentum of a particle i rate of shares of an exclusion						
	momentum of a particle : rate of change of angular momentum						

	Kinetics of Particles: Energy and Momentum Methods	
	Kinetic energy of a particle: principles of work and energy	
34-36	Applications of principles of work and energy	
	Principle of impulse and momentum	
	Problems involving energy and momentum	
	System of Particles	
	Linear and angular momentum of system of particles	
37-39	Conservation of momentum of a system of particles	
	Kinetic energy of a system of particles	
	Principle of impulse and momentum of a system of particles	
	Kinematics of rigid bodies	
	Rotation about a fixed axis	
40-42	General plane motion	
	Instantaneous centre of rotation in plane motion	
	Absolute and relative acceleration in plane motion	

ASSESSMENT STRATEGY

	Assessment Method	(100%)	Remarks	
COs				
	Class Assessmen	t		
1	Assignment	20		
2	Assignment	20		
	Exam			
1	Final Exam, CT	80		
2	Final Exam, CT, MID	80		
3	Final Exam, CT	100		
4	Final Exam, CT, Mid	100		

REFERENCE BOOKS

- Vector Mechanics for Engineers: Statics and Dynamics Ferdinand P. Beer, E Russell Jr. Johnstone; McGraw-Hill Companies, 5th edition 1988.
- 2. Engineering Mechanics Timoshenko, D H Young, J V Rao
- 3. Engineering Mechanics Andrew Pytel, Jaon Kiusaloas

- 4. Engineering Mechanics, Statics and Dynamics Joseph F Shelley; McGraw-Hill, 1980.
- 5. Engineering's Mechanics J.L. Merian& LG Kraige

Spring Semester L-2, T-1

COURSE INF	ORMATION

PRE-REQUISITE						
Course Title	Engineering Mechanics Sessional	Credit Hours	1.50			
Course Code	ME 254	Lecture Contact Hours	3.00			

ME 253

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course is designed for learners to learn various theories and applications of engineering mechanics in practical form. This sessional course is design to build up the confidence among the students in applying various theory of mechanics

OBJECTIVE

1. Demonstrate practical understanding on various laws used in engineering mechanics

2. Demonstrate practical understanding on various systems of rigid body mechanics

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Corresponding PO	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Be able to demonstrate practical understanding on various laws used in engineering mechanics	1	C4, P3			3	Q, ASG, R, F
CO2	Be able to demonstrate practical knowledge on various systems taught in the theory class	2	C4, P4			3,4	Q, ASG, R, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

- 1. Study of coefficient of friction by changing angle of inclination.
- 2. Study of impulse momentum principle
- 3. Study of friction wheel
- 4. Study of Centroid of irregular shape body
- 5. Study of rigid body kinematics
- 6. Study of planar motion of rigid body

CO-PO MAPPING

No		Course Learning Outcome		PROGRAM OUTCOMES (PO)												
110.		Course Learning C	Jucome	1	2	3	4	5	6	7	8	9	10	11	12	
CO1 Be able to demonstrate practical understanding on various laws used in engineering mechanics			3													
CO2 Be able to demonstrate practical knowledge on various systems taught in the theory class			3													
Justific	ation	for CO-PO mapp	ing:													
Mapping Corresponding Level of matching							Ju	stifi	cat	ions	5					
CO1-PO	CO1-PO13In order to demonstrate practical understanding theoretical framework of various engineering fundamental laws, knowledge of those law and their derivation from basic is necessary						al of									
CO2-PO22Students will learn to analyse various engine deviation from theory in real world scenario				Students will learn to analyse various engineering systems a deviation from theory in real world scenario					ns ar	ıd						

TEACHING LEARNING STRATEGY		
Teaching and Learning Activities	Engage	ment (hours)
Face-to-Face Learning		
Lecture		14
Practical		28
	Total	42
Self-Directed Learning		
Preparation of Lab Reports		10
Preparation of Lab Test		10
Preparation of presentation		5

Preparation of Quiz	10
Engagement in Group Projects	20
Formal Assessment	
Continuous Assessment	14
Final Quiz	1
Total	112

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	1. Study of coefficient of friction by changing angle of inclination.	
Week-2	Study of impulse momentum principle	
Week-3	Study of friction wheel	
Week-4	Study of Centroid of irregular shape body	
Week-5	Study of rigid body kinematics	
Week-6	Study of planar motion of rigid body	
Week-7	Final Exam	

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessmen		
1,2	Lab participation and Report	20	
1,2	Presentation	20	
	Exam		
1,2	Lab Test 1 & 2	30	
1,2	Final Exam	30	

REFERENCE BOOKS

Lab Handbook

Ferdinand P. Beer, E RussellJr , Vector Mechanics for Engineers: Statics. Johnston, Publisher – McGraw-Hill Companies, 5th edition 1988.

Joseph FShelley, Engineering Mechanics, Statics and Dynamics, USA: McGraw-Hill, 1980.

Hibbeler, Russell Charles, and Russell C. Hibbeler. Engineering mechanics: statics & dynamics.

Pearson Education India, 2007.

REFERENCE SITE

N/A

Spring/Fall Semester L-1, T-I

COU	COURSE INFORMATION									
Cours	e Code	ME 142		Lecture Contact Hours :						
Cours	e Title	Workshop Sessional		Credit	Credit Hours				: 1.50	
PRE-	REQUIS	SITE								
None										
CUR	RICULU	M STRUCTURE								
Outco	ome Base	d Education (OBE)						_		
SYNC	OPSIS/R	ATIONALE								
In this and m useful OBJH	s course s nachine to l for the s	students will be introduction of the students will be a students in later projects	ced with different llso presented wit	wood worki	ng too echniq	ols, bei jues. T	ich to his tra	IIS, h ainin	and tools g will be	
 Students will be able to recognize wood working tools, common bench tools, hand tools and machine tools. Students will be able to identify the machines used in welding and machine shops and label them with their functions. Students will be able to demonstrate a job with proper planning and estimating. Students will be able to produce lab report with proper appearance, format, grammar, introduction, objective and procedure. Ability to produce lab report with proper results, discussions and conclusion 										
No.	(Course Outcome	Correspondin g PO	Bloom's Taxonomy	СР	CA	KP	Ass M	sessment lethods	

No.	Course Outcome	Correspondin g PO	Taxonomy	СР	CA	KP	Methods
CO1	Be able to identify the basics of tools and equipment used in machining, welding, casting and moulding.	1	C3			1	R, Q, LT

CO2	Be able to compare between different types of welding and machining processes and select proper cutting tool for specific machining processes.	2,3	C1, C3		1	R, Q, LT
CO3	Find out about the importance of general safety precautions on different shop floors	1	C4		1	R, Q, LT
CO4	Develop practical skills by performing the experiments in different shops of workshop	5	C3		6	R, Q, LT

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, LT – Lab Test, PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Experiments:

- 1) Design and making of pattern for casting
- 2) Mold making, casting and assembly of final project
- 3) Study of electric arc welding
- 4) Study of Resistance Welding/Spot Welding
- 5) Study of Welding joints and welding positions
- 6) Study of Gas Welding/cutting
- 7) Study of TIG and MIG Welding
- 8) Manufacturing of machine component by using Lathe machine
- 9) Manufacturing of machine component by using Shaper machine
- 10) Manufacturing of a machine component by using Milling Machine
- 11) Manufacturing of a machine component by using Drilling Machine
- 12) Carpentry: Middle Lap T Joint, Cross Lap Joint, Mortise And Tenon T joint, Bridle T Joint

СО-РО	MAF	PPING													
No		Course Learning (Jutcome			Pl	ROC	GRA	M	OU	TCC)ME	S (PO))	
110.			Jucome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be a tools mach mold	able to identify t and equipmer nining, welding, ling.	he basics of at used in casting and	3											
CO2	Be diffe mach prop mach	able to compa rent types of w nining processes er cutting tool nining processes.	re between velding and and select for specific		3	2									
CO3	Find gene diffe	nd out about the importance of eneral safety precautions on fferent shop floors													
CO4	Develop practical skills by performing the experiments in different shops of workshop							3							
Justific	ation	for CO-PO mapp	ing:												
Mappir	ıg	Corresponding Level of matching					Jus	stifi	cati	ons					
CO1-PC	D1	3	In order to knowledge o	ide f eng	ntify ginee	the the	e ba g fur	asic 1dar	s o nen	f to tal v	ools woul	and d be	equij requir	oment ed.	, the
CO2-PC	02	3	In order to engineering f) p fund	erfoi ame	rm ntals	the s wo	ex ould	aper be :	ime requ	nts, iired	the	knov	wledg	e of
CO2-PC	03	2	In order to engineering f	o p fund	erfoi amei	rm ntals	the s is a	ex also	aper req	ime uire	nts, ed.	the	knov	wledg	e of
CO3-PO	D1	3	For perform essential in the	ing nis la	the abor:	exp atory	berir y.	nen	ts,	safe	ety j	preca	autions	s are	very
CO4-PC	05	3	Students wil appropriate to	l ac echn	quir ique	e kı es, re	now sou	ledg rces	ge (s, an	on l Id m	how node	to s rn en	select Igineei	and a ring to	apply ools.

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	14
Practical	28
	Total 42
Self-Directed Learning	
Preparation of Lab Reports	10
Preparation of Lab Test	10
Preparation of presentation	5
Preparation of Quiz	10
Engagement in Group Projects	20
Formal Assessment	
Continuous Assessment	14
Final Quiz	1
Total	112
TEACHING METHODOLOGY	
Lecture followed by practical experiments and discussion, Co-operative and	Collaborative Method,

Project Based Method

COURSE S	SCHEDULE
Week-1	Expt-01: Design and making of pattern for casting
Week-2	Expt-02: Mold making, casting and assembly of final project
Week-3	Expt-03: Study of electric arc welding
Week-4	Expt-04: Study of Resistance Welding/Spot Welding
Week-5	Expt-05: Study of Welding joints and welding positions
Week-6	Expt-06: Study of Gas Welding/cutting
Week-7	Expt-07: Study of TIG and MIG Welding
Week-8	Expt-08: Manufacturing of machine component by using Lathe machine
Week-9	Expt-09: Manufacturing of machine component by using Shaper machine
Week-10	Expt-10: Manufacturing of a machine component by using Milling Machine
Week-11	Expt-11: Manufacturing of a machine component by using Drilling Machine
Week-12	Expt-12: Carpentry: Middle Lap T Joint, Cross Lap Joint, Mortise And Tenon T joint, Bridle T Joint
Week-13	Viva

Week-14	Quiz Test	
	Components	Grading
Continuou s	Lab participation and Report	30%
Assessme nt (60%)	Labtest-1, Labtest-2	30%
	Lab Quiz	40%
	Total Marks	100%

REFERENCE BOOKS

1. Machine Shop Practice – James Anderson, W. A. Chapman.

2. Callister W. D., Material Science & Engineering, John Wiley & Sons.

Spring Semester L-1, T-I

COURSE IN	FORMATION							
Course Code Course Title	ME 176 Workshop Practice	Lecture Contact Hours Credit Hours	3.00 1.50					
PRE-REQUIS	PRE-REQUISITE							
None								
CURRICULU	M STRUCTURE							
Outcome Based	Education (OBE)							

SYNOPSIS/RATIONALE

Workshop is a place where students acquire knowledge on the operation of various processes involved in manufacturing and production. The workshop practical courses make students competent in handling practical work in engineering environment.

OBJECTIVE

1. The student will be able to use different manufacturing (machining, welding, foundry, sheet

metal working, etc.) processes required to manufacture a product from the raw materials.

2. He will be able to use different measuring, marking, cutting tools used in workshop.

3. He will be aware of the safety precautions while working in workshop.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Corresponding PO	Bloom's Taxonomy	СР	CA	KP	Asse ssme nt Meth ods
CO1	Be able to identify the basics of tools and equipment used in machining, welding, casting and moulding.	1	C3			1	R, Q, LT
CO2	Be able to compare between different types of welding and machining processes and select proper cutting tool for specific machining processes.	2,3	C1, C3			1	R, Q, LT
CO3	Find out about the importance of general safety precautions on different shop floors.	1	C4			1	R, Q, LT
CO4	Develop practical skills by performing the experiments in different shops of workshop.	5	C3			6	R, Q, LT

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Sheet Metal: Shop safety practice, Identification of different types of sheets/plates, e.g. CI,GI, MS, GP sheet etc. with commercial specification. Acquaintance with sheet metal workingtools, machines and measuring instruments. Practice jobs on sheet metal (development ofcones,bends,ductsetc.,

Machine and Fitting Shop: Shop safety practices, Acquaintance with tools used in fitting shop, e.g. Marking, Holding, Chiseling, Filing, Sawing etc. Tools, Practical jobs on the use of tools, Use of taps and dies. Acquaintance with different cutting tools and machine tools, Operation and maintenance of different machine tools, Practical jobs on: plain and taper turning, thread cutting, doing jobs by using shaper, milling, drilling and grinding machines. Welding: Shop safety practice, Acquaintance with arc and gas welding tools, machines, electrodes, gas cylinders, their identification, types of gas flames, job preparation for welding. Practice on gas, arc welding and gas cutting of MS sheets and plates, soldering and brazing practices, study of welding defects. **Foundry**: Shop safety practice, Acquaintance with foundry tools and equipments, introduction on foundry: molding, casting, pattern, core, bench, practice on simple bench or floor molding with solid and split pattern in green sand with and without cores, preparation of molding sand and core, preparation of mold, casting, study of defects in casting.

Experiments:

- 1) Design and making of pattern for casting
- 2) Mold making, casting and assembly of final project
- 3) Study of electric arc welding
- 4) Study of Resistance Welding/Spot Welding
- 5) Study of Welding joints and welding positions
- 6) Study of Gas Welding/cutting
- 7) Study of TIG and MIG Welding
- 8) Manufacturing of machine component by using Lathe machine
- 9) Manufacturing of machine component by using Shaper machine
- 10) Manufacturing of a machine component by using Milling Machine
- 11) Manufacturing of a machine component by using Drilling Machine

СО-РО	MAP	PPING													
						PF	ROG	GRA	M	OU"	ГСО	MES	5 (PO)		
No.		Course Learning C	Jutcome	1	2	3	4	5	6	7	8	9	10	1 1	12
C01	Be a tools mach moul	able to identify the basics of s and equipment used in hining, welding, casting and Idding.													
CO2	Be diffe mach prop mach	Be able to compare between different types of welding and machining processes and select proper cutting tool for specific machining processes.				2									
CO3	Find gene diffe	out about the in ral safety prec rent shop floors	nportance of eautions on	portance of autions on 3											
CO4	Deve perfo diffe	elop practical orming the exp rent shops of work	al skills by experiments in vorkshop 3												
Justific	ation	for CO-PO mapp	ing:												
Mappin	g	Corresponding Level of matching				•	Just	tific	atio	ns					
CO1-PC	01	3	In order to identify the basics of tools and equipment, the knowledge of engineering fundamental would be required.												
CO2-PC	12		Kilowicuge 0	f eng	gine	ering	g fur	ndar	nen	tal v	voul	d be	requir	red.	
)2	3	In order to engineering f	f eng pe fund	gine rfor ame	ering m t	g fur he s wo	ndar exp ould	nen berin be i	tal v nen requ	woul ts, iired	d be the	requip: requir know	red. ledge	e of
CO2-PC)2	3	In order to engineering f In order to engineering f	f eng pe fund pe fund	gined rfor ame rfor ame	m t m tals m tals	g fur he s wo he s is a	ndar exp ould exp also	nen berin berin perin req	tal v nen requ nen uire	woul ts, iired ts, d.	d be the the	know:	ledge	e of e of
CO2-PC)2)3)1	3 2 3	In order to engineering f In order to engineering f For perform essential in th	f eng pe fund fund fund ing his la	gined rfor ame rfor ame the abor	m t ntals m t ntals expo	g fur he s wo he s is a erim	ndar exp ould exp also nent	nen berin berin req s, s	tal v nen requ nen uire afet	woul ts, iired ts, d. y pi	d be the the	know: know:	ledge ledge are	e of e of very
CO2-PC)2)3)1)5	3 2 3 3 3	In order to engineering f In order to engineering f For perform essential in th Students wil appropriate tools.	f eng pe fund pe fund ing his la l acc tech	gined rfor ame rfor ame the abor quird niqu	m t ntals m t ntals expo atory e kn es,	g fur he s wo he s is a erim y. owl rese	exp uld exp also eedg ourc	nen berin berin req s, s e o ces,	tal v men requ men uire afet n ho an	woul ts, iired ts, d. y pr ow 1 d m	d be the the recau	know know ttions elect a rn en	ledge ledge are nd a ginee	e of e of very pply ering
CO2-PC CO3-PC CO4-PC)2)3)1)5 HING	3 2 3 3 LEARNING STR	In order to engineering f In order to engineering f For perform essential in th Students wil appropriate tools.	f eng pe fund pe fund ing his la l acc tech	gined rformame: rformame: the abor quird niqu	m t ntals m t ntals expo atory e kn es,	g fur he s wo he s is a erim y. owl rese	exp uld exp also aent	nen perin be i perin req s, s	tal v men requ men uire afet n h an	woul ts, iired ts, d. y pr ow t d m	d be the the recau	know know ttions elect a rn en	ledge ledge are nd a ginee	e of e of very pply ering

Face-to-Fac	ce Learning					
Lecture	14					
Practical		28				
	Total 42					
Self-Direct	ed Learning					
Preparation	of Lab Reports	10				
Preparation	of Lab Test	10				
Pro	eparation of presentation	5				
Pro	eparation of Quiz	10				
En	gagement in Group Projects	20				
Formal Ass	essment					
Continuous	Assessment	14				
Final Quiz		1				
Total	112					
TEACHING METHODOLOGY						
Lecture fo Method, Pr	llowed by practical experiments and discussion, Co-operativoject Based Method	ve and Collaborative				
COURSE	SCHEDULE					
Week-1	Expt-01: Design and making of pattern for casting					
Week-2	Expt-02: Mold making, casting and assembly of final project					
Week-3	Expt-03: Study of electric arc welding					
Week-4	Expt-04: Study of Resistance Welding/Spot Welding					
Week-5	Expt-05: Study of Welding joints and welding positions					
Week-6	Expt-06: Study of Gas Welding/cutting					
Week-7	Expt-07: Study of TIG and MIG Welding					
Week-8	Expt-08: Manufacturing of machine component by using Lathe	machine				
Week-9	Expt-09: Manufacturing of machine component by using Shaper	machine				
Week-10	Expt-10: Manufacturing of a machine component by using Milli	ng Machine				
Week-11	Expt-11: Manufacturing of a machine component by using Drill	ing Machine				
Week-12	Final Lab Report Submission					
Week-13	Viva					
Week-14	Quiz Test					

ASSESSME	ASSESSMENT STRATEGY						
	Components	Grading					
Continuous	Lab participation and Report	30%					
(60%)	Labtest-1, Labtest-2	30%					
	Lab Quiz	40%					
	Total Marks	100%					
REFERENC	CE BOOKS						
1. Machine S	hop Practice – James Anderson	, W. A. Chapman.					
2. Callister W	V. D., Material Science & Engin	eering, John Wiley & Sons.					

Spring/Fall Semester L-1, T-I

COURSE IN	FORMATION							
Course Code	ME 178	Lecture Contact Hours	3.00					
Course Title	Basic Engineering Drawing and CAD	g Drawing and CADCredit Hours1.50						
PRE-REQUIS	ITE							
N/A								
CURRICULU	M STRUCTURE							
Outcome Based	d Education (OBE)							
SYNOPSIS/R.	ATIONALE							
This course is based as a mea use them to con	This course is designed for learners to learn engineering drawing skills both manual and computer based as a means of accurately and clearly communicating ideas, information and instructions and use them to communicate with others through engineering drawings and solve complex problems of							

real world.

OBJECTIVE

I EADNING OUTCOMES & CENEDIC SKILLS

1. To enable students to acquire and use engineering drawing skills as a means of accurately and clearly communicating ideas, information and instructions.

2. To enable the students to read various professional drawing that will enhance their exposure to real engineering practices.

2. To enable students to acquire requisite knowledge, techniques and attitude required for advanced study of engineering drawing.

LLAI												
No.	Course Outcome	Correspondin g PO	Bloom's Taxonomy	СР	CA	KP	Assessmen t Methods					
CO1	Be able to prepare engineering drawing of basic element using manual tools	1	C3, A3			4						
CO2	Be able to prepare engineering drawing of basic element using computer software	1,5	C3, A3			4,6						
CO3	Be able to identify and interpret real life engineering drawings	2	C3, A3			4						

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Introduction; Instruments and their uses; First and third angle projections; Orthographic drawings; Isometric views; Sectional views and conventional practices; Introduction to AutoCAD/Solid Works, Real life drawing inspection and identification

(CO-PO MAPPING															
ſ	N.		Comme Loomine C				PF	ROG	RA	M (TUC	CO	MES	S (PO)	
	No.		Course Learning C	Jutcome	1	2	3	4	5	6	7	8	9	10	11	12
	CO1	Be draw manu	able to prepare ring of basic ele ual tools	3												
-	CO2	Be draw com	3				3									
	CO3	Be a life e	interpret real gs		3											
•	Justifica	ation	for CO-PO mapp	ing:												
]	Mappin	ıg	Corresponding Level of matching	g Justifications												
(CO1-PC)1	3	In order to draw engineering drawing of various objects, the knowledge of practice in mechanical Engineering discipling would be required.							ts, the cipline					
•	CO2-PC)1	2	In order to draw engineering drawing of various objects, the knowledge of practice in mechanical Engineering discipline would be required.							ts, the cipline					
•	CO2-PC)5	3	Students will	use	Aut	oCA	D /	Sol	id V	Nork	ks so	oftwa	are		
•	CO3-PC)1	2	In order to knowledge would be req	drav of p uire	v er oract d.	igine ice	eerin in	ng (me	drav chai	ving nical	of Ei	vari ngine	ous eering	object g diso	ts, the cipline
'	TEACH	IING	LEARNING STR	RATEGY												
,	Teachin	g and	Learning Activitie	s								Т	Eng	agem	ent (h	ours)
]	Face-to-	Face	Learning													
]	Lecture														14	
]	Practica	1												4	28	
												7	Fotal		42	
	Self-Dir	rected	Learning													
]	Preparat	tion of	Lab Reports												10	
]	Preparat	tion of	Lab Test												10	
		Prepa	aration of presentat	ion											5	
		Prepa	aration of Quiz												10	
		Enga	gement in Group P	Projects									20			

Formal Assessment	
Continuous Assessment	14
Final Quiz	1
Total	112

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks						
Week-1	Introduction							
Week-2	First and third angle projections							
Week-3	Orthographic drawings							
Week-4	ek-4 Orthographic drawings							
Week-5	Week-5 Isometric views							
Week-6								
Week-7	Week-7 Mid-term Exam							
Week-8	Sectional views and conventional practices							
Week-9	Week-9 Solid Works Practice – Orthographic Drawing							
Week-10	ek-10 Solid Works Practice – Orthographic Drawing							
Week-11	Solid Works Practice – Orthographic Drawing							
Week-12	Actual drawing reading practice – Fractional distillation column, Fuel storage tank sectional view, Gas plant, off-shore oil and gas plant layout	Final Exam						
Week-13	Week-13Actual drawing reading practice – Pump cut sectional view, Welding joints ISO symbol, Fluid power and control ANSI symbol							
Week-14	Final Exam							

ASSESSMEN	NT STRATEGY			
	COs	Assessment Method	(100%)	Remarks
		Class Assessmen		
	1,2,3,4	Lab participation and Report	20	
	1,2,3,4	Presentation 20		
		Exam	Exam	
	1,2,3,4	Lab Test 1 & 2	30	
	1,2,3,4	Final Exam	30	
REFERENCI	E BOOKS			
Lab Handbook	X			
Mechanical Er	ngineering Drawing	g – A C Mandal, M Quamru	l Islam	

Fall Semester L-2, T-II

COURSE INFORMATION											
Course	e Code	ME 271		Lecture Con	tact H	ours	3.	00			
Course	e Title	Fluid Mechanics		Credit Hours	5		3.	00			
PRE-REQUISITE											
None	None										
CURI	CURRICULUM STRUCTURE										
Outco	Outcome Based Education (OBE)										
SYNC	SYNOPSIS/RATIONALE										
To giv interna buoya in flui	To give fundamental knowledge of fluid, its properties and behaviour under various conditions of internal and external flows. To develop understanding about hydrostatic law, principle of buoyancy and stability of a floating body and application of mass, momentum and energy equation in fluid flow.										
To introduce the students to different fluid power driven machineries and components, Fluid turbo-machinery theory, performance characteristics of centrifugal and axial flow fans, compressors, pumps and turbines, fluid vibrations and sound, water hammer, introduction to fluid power controls and fluid amplifiers, operating principle and design.											
OBJE	CCTIVE										
 The course on fluid mechanics is devised to introduce fundamental aspects of fluid flow behaviour. Students will learn to develop steady state mechanical energy balance equation for fluid flow systems, estimate pressure drop in fluid flow systems and determine performance characteristics of fluid machinery. 											
LEAF	RNING O	UTCOMES & GENER	RIC SKILLS								
No.	С	ourse Outcome	Corresponding PO	Bloom's Taxonomy	СР	CA	KP	Asses sment Meth ods			
CO1	Identify fluids ch and their fluid flo relationsl and elev manomet other devices	how properties of ange with temperature effect on pressure and ow and define the nip between pressure ation as it relates to ters, barometers and pressure measuring	1,2	C1, C2, C3	1,4, 6			Q, ASG, F			
CO2	Calculate buoyancy in a stat performa	e forces on a plane and y on a body submerged tic fluid and analyze nce and frictional	2,3	C2, C3	2,5, 6			Q, ASG, F			

	losses in pipe system					
CO3	Clear understanding of general energy equation to calculate changes in fluid flow for circular and non- circular pipes for in- compressible fluids	1,2	C2, C3, C4	1,3	1,2	Q, F, CS
CO4	Analyze performance/efficiency of different turbo machineries.	1,2	C4	2,5	1	Q, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Introduction: Fundamental concepts, Viscosity, Compressibility, Surface tension and capillarity, Vapor pressure, Manometers and other pressure measuring devices.

Fluid Statics: Pressure at a point, pressure gradient, Pressure on flat and curved surfaces immersed in fluids, centre of pressure. Buoyancy and flotation, Metacentre and metacentric height, Stability of submerged and floating bodies.

Kinematics of Fluid Flow: Velocity and acceleration of fluid particles, types of fluid flow, systems and control volumes; one and two dimensional flow; continuity equation. Eulers' equation and Bernoulli's' equation. Energy equation with or without losses, comparison of energy equation with Bernoulli's equation, kinetic energy correction factor. Flow measuring devices. Flow through sharp edged orifice, the pitot tube, the venturi-meter, the flow nozzle and orifice meter.

Fluid Machinery: Introduction to roto-dynamic and positive displacement machinery; Euler's pump turbine equation. Degrees of reaction. Impulse and reaction turbine classification; performance of Pelton wheel, Francis turbine and Kaplan turbine; characteristic curves, governing of turbines, selections and model test of turbine.

Reciprocating Pumps: Working principle of reciprocating pump. Types of reciprocating pumps, Work done by reciprocating pump; Co-efficient of discharge, Slip, Cavitation of reciprocating pumps; Effect of acceleration of piston on velocity and pressure in the suction and delivery pipes.

Centrifugal Pumps: Work done and efficiency of centrifugal pumps, Advantage over reciprocating pumps, Types of centrifugal pumps, Characteristics curves. Priming, Troubles and remedies, Specific speed. Pumps in series and in parallel, Multistage pumps, Turbine pump, Selection of pumps.

CO-PO MAPPING

		PROGRAM OUTCOMES (PO)													
No.		Course Learning C	Outcome	1	2	3	4	5	6	7	8	9	10	1	12
														1	
CO1	change with temperature and their effect on pressure and fluid flow and define the relationship between pressure and elevation as it relates to manometers, barometers and other pressure measuring devices			3	3										
CO2	Calculate forces on a plane and buoyancy on a body submerged in a static fluid and analyze performance and frictional losses in pipe system			2	3										
CO3	Clear understanding of general energy equation to calculate changes in fluid flow for circular and non-circular pipes for in- compressible fluids			3	2										
CO4	Analyze performance/efficiency of different turbo machineries.		3	3											
Justific	ation	for CO-PO mapp	ing:												
Mappir	ng	Corresponding					Jus	tific	catio	ons					
Level of matching															
CO1-PO13Students will be able to know a Students will get clear theoretic measuring devices and by using the				about the properties of fluids. cal knowledge about pressure these devices they can measure											

	the fluid pressure.							
CO1-PO2	3	Students will develop the ability to illustrate a relationship between pressure and elevation. The relationship relates to manometers, barometers and other pressure measuring devices which are essential in fluid mechanics.						
CO2-PO1	2	Students get definition of buoyancy, buoyant force, submerged body, metacentre, metacentric height and other terms of fluid mechanics.						
CO2-PO2	3	Students will be able to determine forces on a plane and buoyancy on a body submerged in a static fluid.						
CO3-PO1	CO3-PO1 3 The students will attain the knowledge to understand energy equation							
CO3-PO2	2 Students will have an ability to calculate the change in different dimensional flow in pipes							
CO2-PO1 3 Students will be able to determine the performance of a hydraulic or turbo machines in operation using different system parameters.								
CO2-PO2	CO2-PO23Students will also have in depth knowledge about drawing schematic and usage of velocity triangle diagrams for axial and radial turbomachines							
TEACHING	LEARNING STR	RATEGY						
Teaching and	Learning Activitie	es	Engagement (hours)					
Face-to-Face	Learning							
			42					
Self-Directed	Learning		75					
Formal Asses	sment		5.5					
Total 122.5								
TEACHING METHODOLOGY								
Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method								
COURSE SC	CHEDULE							

Week-1	Lecture-1: Introduction : Fundamental concepts, Viscosity, Compressibility, Surface tension and capillarity Lecture-2: Vapor pressure, Manometers and other pressure measuring devices
Week-2	Lecture-3 : Fluid Statics : Pressure at a point, pressure gradient, Pressure on flat and curved surfaces immersed in fluids, center of pressure

	Lecture-4 :Buoyancy and flotation
Week-3	Lecture-5 :Metacentre and metacentric height
	Lecture-6 :Stability of submerged and floating bodies
	Lecture-7 : Kinematics of Fluid Flow : Velocity and acceleration of fluid particles, types of fluid flow, systems and control volumes
Week-4	Lecture-8 :One and two dimensional flow; continuity equation
	Lecture-9 :Eulers' equation and Bernoulli's' equation
Week-5	Lecture-10: Energy equation with or without losses, comparison of energy equation with Bernoulli's equation, kinetic energy correction factor
Week-6	Lecture-11: Flow measuring devices
	Lecture-12 :Flow through sharp edged orifice, the pitot tube, the venturi-meter, the flow nozzle and orifice meter
Week-7	Lecture-13 : Fluid Machinery : Introduction to roto-dynamic and positive displacement machinery; Euler's pump turbine equation. Degrees of reaction
Week -8	Lecture-14 Impulse and reaction turbine classification
	Lecture-15 performance of Pelton wheel
Week-9	Lecture-16 Francis turbine and Kaplan turbine
Week-10	Lecture-17 Characteristic curves, governing of turbines
	Lecture-18 selections and model test of turbine
Week-11	Lecture-19 Reciprocating Pumps: Working principle of reciprocating pump
	Lecture-20 Types of reciprocating pumps
	Lecture-21 Work done by reciprocating pump
Week-12	Lecture-22 Co-efficient of discharge, Slip
	Lecture-23 Cavitation of reciprocating pumps
	Lecture-24 Effect of acceleration of piston on velocity and pressure in the suction and delivery pipes
Week-13	Lecture-25 Centrifugal Pumps : Work done and efficiency of centrifugal pumps, Advantage over reciprocating pumps, Types of centrifugal pumps
	Lecture-26 Characteristics curves. Priming
	Lecture-27 Troubles and remedies, Specific speed
Week-14	Lecture-28 Pumps in series and in parallel
	Lecture-29,30 Multistage pumps
	Lecture-31,32Turbine pump, Selection of pumps

ASSESSMENT STRATEGY										
Components			Grading	СО	I	Blooms Taxonomy				
	COs Assessmen		ent Method	(100%)	Remark	S				
		Cl	ass Assessme	nt						
	1		СТ	20						
	3		СТ	30						
	4		СТ	30						
			Exam							
	1	MID, F	inal Exam	80						
	2	Fina	l Exam	100						
	3	MID, F	inal Exam	70						
	Fina	l Exam	70							
(CO – Course Outo	ome C	= Cognitive	Domain P -	- Psychome	tor Dom	ain $\Delta - \Delta$ ffective				

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

1. Fundamentals of fluid mechanics by Bruce Roy Munson and Donald F. Young

2. A Textbook of Fluid Mechanics and Hydraulic Machines by R. K. Bansal

3. Engineering Fluid Mechanics by C. T. Crowe, Donald F. Elger, and John A. Roberson

4. Transport Phenomena by Edwin N. Lightfoot, Robert Byron Bird, and Warren E. Stewart

Fall Semester L-2, T-II

COURSE INFORMATION					
Course Code	ME 272	Lecture Contact Hours	3.00		
Course Title	Fluid Mechanics Laboratory	Credit Hours	1.50		
PRE-REQUISITE					

ME 271

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course provides an introduction to the principles of fluid mechanics of mechanical systems. The focus is to illustrate practical engineering applications of these principles in relation to simple fluid systems. The learning approach is to apply engineering principles to performance analysis and prediction of simple fluid systems. This will provide a basis for understanding how performance can be improved. Student will acquire an understanding of the essential theoretical basis of the fluid mechanics and machinery sciences and their application to a range of problems of relevance to practical engineering.

OBJECTIVE

1. This course provides an introduction to the principles of fluid mechanics of mechanical systems.

2. The focus is to illustrate practical engineering applications of these principles in relation to simple fluid systems.

3. By the end of this course students should be able to understand the basic principles and analysis of both static and dynamic fluid systems and their machinery applications

LEARNING OUTCOMES & GENERIC SKILLS Assess Bloom's ment Correspon No. Course Outcome CP CA KP Taxonomy Method ding PO S **Identify** how properties of fluids change with temperature R, Q, CO1 1 C3 1 and their effect on pressure and LT fluid flow. **Illustrate** practical engineering applications of these principles R, Q, CO₂ 1 C2 1 in relation to simple fluid LT systems. Evaluate and design fluid R, Q, 2 CO3 C5 5 engineering systems LT

CO4 Build simple solutions to a range of problems in basic fluid flows.	4	C3		3	R, Q, LT
--	---	----	--	---	-------------

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

1. Verification of Bernoulli's equation.

2. Determination of coefficient of discharge by orifice.

3. Determination of coefficient of discharge by venturi meter.

4. Determination of head loss due to friction, bend, sudden expansion, sudden contraction, in gate and globe valves.

5. Performance test of pumps.

CO-PO MAPPING

No		Course Learning Outcome		PROGRAM OUTCOMES (PO)											
110.				1	2	3	4	5	6	7	8	9	10	11	12
CO1	Iden fluid and fluid	lentify how properties of uids change with temperature and their effect on pressure and uid flow.													
CO2	D2 Illustrate practical engineering applications of these principles in relation to simple fluid systems.		ering iples fluid	3											
CO3	Evaluate and design fluid engineering systems		fluid		3										
CO4 Build simple solutions to a range of problems in basic fluid flows.		to a fluid				3									
Justification for CO-PO mapping:															
Mappi	ng	Corresponding Level of matching	Justifications												
CO1-P	D1-PO13In order to identify the basics of fluid mechanics, the knowledge of engineering fundamental would be required			nics, the required.											

CO2-PO1	3	In order to perform the experiments, practical engineering applications of these principles in relation to simple fluid systems knowledge would be required					
CO3-PO2	2	In order to solve and design fluid engineering system, the knowledge of engineering fundamentals is also required.					
CO4-PO4	3	For performing the experiments, basic simple solutions to a range of problems in basic fluid flows is needed.					
TEACHIN	G LEARNING STRAT	TEGY					
Teaching an	d Learning Activities	Engagement (hours)					
Face-to-Fac	e Learning						
Lecture		14					
Practical		28					
		Total 42					
Self-Directe	d Learning						
Preparation	of Lab Reports	10					
Preparation	of Lab Test	10					
Pre	5						
Pre	10						
Eng	ects 20						
Formal Assessment							
Continuous	14						
Final Quiz	1						
Total 112							
TEACHING METHODOLOGY							
Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method							
COURSE S	CHEDULE						
Week-1	Verification of Bernoul	li's equation.					
Week-2	Generation of v	views of solid bodies in different plane					
Week-3	Veek-3 Determination of coefficient of discharge by orifice.						
Week-4	4						
Week-5	Determination of coefficient of discharge by venturimeter						

Week-6	•					
Week-7	Quiz					
Week-8						
Week-9	Det in g	termination of head loss due t gate and globe valves	o friction, bend, sudden expansion, sudden contraction			
Week-10						
Week-11	Per	formance test of pumps.				
Week-12						
Week-13	Qu	iz,Viva				
Week-14						
	(Components	Grading			
Continuous	s I	Lab participation and Report	30%			
(60%)		Labtest-1, Labtest-2	30%			
Lab Quiz			40%			
	Total Marks 100%					
REFERENCE BOOKS						
1. Fundame	entals	s of fluid mechanics by Bruce	Roy Munson and Donald F. Young			
2. A Textbook of Fluid Mechanics and Hydraulic Machines by R. K. Bansal						
3. Engineering Fluid Mechanics by C. T. Crowe, Donald F. Elger, and John A. Roberson						
4. Transport Phenomena by Edwin N. Lightfoot, Robert Byron Bird, and Warren E. Stewart						

Appendix:

Bloom's Taxonomy

Bloom's Taxonomy was created in 1956 under the leadership of educational psychologist Dr Benjamin Bloom in order to promote higher forms of thinking in education, such as analyzing and evaluating concepts, processes, procedures, and principles rather than just remembering facts (rote learning). It is most often used when designing educational, training, and learning processes. Bloom identified three *domains* of educational activities or learning (Bloom, et al. 1956):

- **Cognitive**: mental skills (*knowledge*)
- Affective: growth in feelings or emotional areas (*attitude or self*)
- **Psychomotor**: manual or physical skills (*skills*)

Cognitive Domain:

The cognitive domain involves knowledge and the development of intellectual skills (Bloom, et al, 1956). This includes the recall or recognition of specific facts, procedural patterns, and concepts that serve in the development of intellectual abilities and skills. There are six major categories of cognitive processes, which are listed in order below, starting from the simplest to the most complex.

Category	Examples, key words (verbs), and technologies for learning (activities)
	Examples : Recite a policy. Quote prices from memory to a customer. Recite the safety rules.
C 1: Remembering : Recall or retriev previous learned information.	Key Words : defines, describes, identifies, knows, labels, lists, matches, names, outlines, recalls, recognizes, reproduces, selects, states
	Technologies : book marking, flash cards, rote learning based on repetition, reading
C 2: Understanding: Comprehending	Examples : Rewrite the principles of test writing. Explain in one's own words the steps for performing a complex task. Translate an equation into a computer spreadsheet.
the meaning, translation, interpolation, and interpretation of instructions and problems. State a problem in one's own words.	Key Words : comprehends, converts, defends, distinguishes, estimates, explains, extends, generalizes, gives an example, infers, interprets, paraphrases, predicts, rewrites, summarizes, translates
	Technologies : create an analogy, participating in cooperative learning, taking notes, storytelling, Internet

	search
C 3: Applying : Use a concept in a new situation or unprompted use of an abstraction. Applies what was learned in the classroom into novel situations in the work place.	 Examples: Use a manual to calculate an employee's vacation time. Apply laws of statistics to evaluate the reliability of a written test. Key Words: applies, changes, computes, constructs, demonstrates, discovers, manipulates, modifies, operates, predicts, prepares, produces, relates, shows, solves, uses Technologies: collaborative learning, create a process, blog, practice
C 4: Analyzing : Separates material or concepts into component parts so that its organizational structure may be understood. Distinguishes between facts and inferences.	 Examples: Troubleshoot a piece of equipment by using logical deduction. Recognize logical fallacies in reasoning. Gathers information from a department and selects the required tasks for training. Key Words: analyzes, breaks down, compares, contrasts, diagrams, deconstructs, differentiates, discriminates, distinguishes, identifies, illustrates, infers, outlines, relates, selects, separates Technologies: Fishbowls, debating, questioning what happened, run a test
C 5: Evaluating : Make judgments about the value of ideas or materials.	 Examples: Select the most effective solution. Hire the most qualified candidate. Explain and justify a new budget. Key Words: appraises, compares, concludes, contrasts, criticizes, critiques, defends, describes, discriminates, evaluates, explains, interprets, justifies, relates, summarizes, supports Technologies: survey, blogging
C 6: Creating : Builds a structure or pattern from diverse elements. Put parts together to form a whole, with emphasis on creating a new meaning or structure.	 Examples: Write a company operations or process manual. Design a machine to perform a specific task. Integrates training from several sources to solve a problem. Revises and process to improve the outcome. Key Words: categorizes, combines, compiles, composes,

creates, devises, designs, explains, generates, modifies, organizes, plans, rearranges, reconstructs, relates, reorganizes, revises, rewrites, summarizes, tells, writes
Technologies : Create a new model, write an essay, network with others

Affective Domain:

The affective domain (Krathwohl, Bloom, Masia, 1973) includes the manner in which we deal with things emotionally, such as feelings, values, appreciation, enthusiasms, motivations, and attitudes. The five major categories are listed from the simplest behavior to the most complex.

Category	Example and Key Words (verbs)
A 1: Receiving Phenomena: Awareness, willingness to hear, selected attention.	 Examples: Listen to others with respect. Listen for and remember the name of newly introduced people. Key Words: acknowledge, asks, attentive, courteous, dutiful, follows, gives, listens, understands
A 2: Responds to Phenomena : Active participation on the part of the learners. Attend and react to a particular phenomenon. Learning outcomes may emphasize compliance in responding, willingness to respond, or satisfaction in responding (motivation).	 Examples: Participates in class discussions. Gives a presentation. Questions new ideals, concepts, models, etc. in order to fully understand them. Know the safety rules and practice them. Key Words: answers, assists, aids, complies, conforms, discusses, greets, helps, labels, performs, presents, tells
A 3: Valuing : The worth or value a person attaches to a particular object, phenomenon, or behavior. This ranges from simple acceptance to the more complex state of commitment. Valuing is based on the internalization of a set of specified values, while clues to these values are expressed in the learner's overt behavior and are often identifiable.	 Examples: Demonstrates belief in the democratic process. Is sensitive towards individual and cultural differences (value diversity). Shows the ability to solve problems. Proposes a plan to social improvement and follows through with commitment. Informs management on matters that one feels strongly about. Key Words: appreciates, cherish, treasure,

	demonstrates, initiates, invites, joins, justifies, proposes, respect, shares
A 4: Organization : Organizes values into priorities by contrasting different values, resolving conflicts between them, and creating an unique value system. The emphasis is on comparing, relating, and synthesizing values.	 Examples: Recognizes the need for balance between freedom and responsible behavior. Explains the role of systematic planning in solving problems. Accepts professional ethical standards. Creates a life plan in harmony with abilities, interests, and beliefs. Prioritizes time effectively to meet the needs of the organization, family, and self. Key Words: compares, relates, synthesizes
A 5: Internalizes Values (characterization): Has a value system that controls their behavior. The behavior is pervasive, consistent, predictable, and most important characteristic of the learner. Instructional objectives are concerned with the student's general patterns of adjustment (personal, social, emotional).	 Examples: Shows self-reliance when working independently. Cooperates in group activities (displays teamwork). Uses an objective approach in problem solving. Displays a professional commitment to ethical practice on a daily basis. Revises judgments and changes behavior in light of new evidence. Values people for what they are, not how they look. Key Words: acts, discriminates, displays, influences, modifies, performs, qualifies, questions, revises, serves, solves, verifies

Psychomotor Domain:

The psychomotor domain (Simpson, 1972) includes physical movement, coordination, and use of the motor-skill areas. Development of these skills requires practice and is measured in terms of speed, precision, distance, procedures, or techniques in execution. Thus, psychomotor skills rage from manual tasks, such as digging a ditch or washing a car, to more complex tasks, such as operating a complex piece of machinery or dancing.

The seven major categories are listed from the simplest behavior to the most complex:

Category	Example and Key Words (verbs)					
P 1: Perception (awareness) : The ability to use	Examples: Detects non-verbal communication					

sensory cues to guide motor activity. This ranges from sensory stimulation, through cue selection, to translation.	cues. Estimate where a ball will land after it is thrown and then moving to the correct location to catch the ball. Adjusts heat of stove to correct temperature by smell and taste of food. Adjusts the height of the forks on a forklift by comparing where the forks are in relation to the pallet. Key Words : chooses, describes, detects, differentiates, distinguishes, identifies, isolates, relates, selects.
P 2: Set : Readiness to act. It includes mental, physical, and emotional sets. These three sets are dispositions that predetermine a person's response to different situations (sometimes called mindsets).	 Examples: Knows and acts upon a sequence of steps in a manufacturing process. Recognize one's abilities and limitations. Shows desire to learn a new process (motivation). NOTE: This subdivision of Psychomotor is closely related with the "Responding to phenomena" subdivision of the Affective domain. Key Words: begins, displays, explains, moves, proceeds, reacts, shows, states, volunteers.
P 3: Guided Response : The early stages in learning a complex skill that includes imitation and trial and error. Adequacy of performance is achieved by practicing.	 Examples: Performs a mathematical equation as demonstrated. Follows instructions to build a model. Responds hand-signals of instructor while learning to operate a forklift. Key Words: copies, traces, follows, react, reproduce, responds
P 4: Mechanism (basic proficiency): This is the intermediate stage in learning a complex skill. Learned responses have become habitual and the movements can be performed with some confidence and proficiency.	 Examples: Use a personal computer. Repair a leaking faucet. Drive a car. Key Words: assembles, calibrates, constructs, dismantles, displays, fastens, fixes, grinds, heats, manipulates, measures, mends, mixes, organizes, sketches.
P 5: Complex Overt Response (Expert) : The skillful performance of motor acts that involve complex movement patterns. Proficiency is indicated by a quick, accurate, and highly	Examples : Maneuvers a car into a tight parallel parking spot. Operates a computer quickly and accurately. Displays competence while playing the

coordinated performance, requiring a minimum of energy. This category includes performing without hesitation, and automatic performance. For example, players are often utter sounds of satisfaction or expletives as soon as they hit a tennis ball or throw a football, because they can tell by the feel of the act what the result will produce.	 piano. Key Words: assembles, builds, calibrates, constructs, dismantles, displays, fastens, fixes, grinds, heats, manipulates, measures, mends, mixes, organizes, sketches. NOTE: The Key Words are the same as Mechanism, but will have adverbs or adjectives that indicate that the performance is quicker, better, more accurate, etc.
P 6: Adaptation : Skills are well developed and the individual can modify movement patterns to fit special requirements.	 Examples: Responds effectively to unexpected experiences. Modifies instruction to meet the needs of the learners. Perform a task with a machine that it was not originally intended to do (machine is not damaged and there is no danger in performing the new task). Key Words: adapts, alters, changes, rearranges, reorganizes, revises, varies.
P 7: Origination : Creating new movement patterns to fit a particular situation or specific problem. Learning outcomes emphasize creativity based upon highly developed skills.	 Examples: Constructs a new theory. Develops a new and comprehensive training programming. Creates a new gymnastic routine. Key Words: arranges, builds, combines, composes, constructs, creates, designs, initiate, makes, originates.

(Ref: http://www.nwlink.com/~donclark/hrd/bloom.html)

Program Outcome (PO)

Program Outcomes (POs) or graduate attributes are narrower statements that describe what students are expected to know and be able to do by the time of graduation. These statements relate to the knowledge, skills and attitudes acquired by students while progressing through the program. The program must demonstrate that by the time of graduation, students have achieved an acceptable minimum level of certain knowledge, skills and behavioral traits. The BAETE specifically requires that students acquire the following graduate attributes:

(a) Engineering knowledge: Apply knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization as specified in K1 to K4 respectively to the solution of complex engineering problems.

(b) **Problem analysis:** Identify, formulate, research literature and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences. (K1 to K4)

(c) **Design/development of solutions:** Design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations. (K5)

(d) **Investigation:** Conduct investigations of complex problems using research-based knowledge (K8) and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.

(e) Modern tool usage: Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering problems, with an understanding of the limitations. (K6)

(f) The engineer and society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems. (K7)

(g) Environment and sustainability: Understand and evaluate the sustainability and impact of professional engineering work in the solution of complex engineering problems in societal and environmental contexts. (K7)

(h) Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice. (K7)
(i) Individual work and teamwork: Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.

(j) Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

(k) **Project management and finance:** Demonstrate knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

(I) Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

In addition to incorporating the above-listed POs (graduate attributes), the educational institution may include additional outcomes in its learning programs. An engineering program that aims to attain the abovementioned POs should ensure that its curriculum encompasses all the attributes of the Knowledge Profile (K1 – K8) as presented in Table 4.1 and as included in the PO statements. The ranges of Complex Problem Solving (P1 – P7) and Complex Engineering Activities (A1 – A5) that should be addressed in the program are given in Tables 4.2 and 4.3, respectively.

	Attribute	
K1	A systematic, theory-based understanding of the natural sciences applicable to the discipline	
K2	Conceptually based mathematics, numerical analysis, statistics and the formal aspects of computer and information science to support analysis and modeling applicable to the discipline	
K3	A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline	
K4	Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline	
K5	Knowledge that supports engineering design in a practice area	
K6	Knowledge of engineering practice (technology) in the practice areas in the engineering discipline	
K7	Comprehension of the role of engineering in society and identified issues in engineering practice in the discipline: ethics and the engineer's professional responsibility to public safety; the impacts of engineering activity; economic, social, cultural, environmental and sustainability	
K8	Engagement with selected knowledge in the research literature of the discipline	

Table 4.1: Knowledge Profile

Table 4.2: Range of Complex Engineering Problem Solving

Attribute	Complex Engineering Problems have characteristic P1 and some or all of P2 to P7:
Depth of knowledge required	P1: Cannot be resolved without in-depth engineering knowledge at the level of one or more of K3, K4, K5, K6 or K8 which allows a fundamentals-based, first principles analytical approach
Range of conflicting requirements	P2: Involve wide-ranging or conflicting technical, engineering and other issues
Depth of analysis required	P3: Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models
Familiarity of issues	P4: Involve infrequently encountered issues
Extent of applicable codes	P5: Are outside problems encompassed by standards and codes of practice for professional engineering
Extent of stakeholder	P6: Involve diverse groups of stakeholders with widely varying

Attribute	Complex activities means (engineering) activities or projects that have some or all of the following characteristics:
Range of resources	A1: Involve the use of diverse resources (and for this purpose resources include people, money, equipment, materials, information and technologies)
Level of interaction	A2: Require resolution of significant problems arising from interactions between wide-ranging or conflicting technical, engineering or other issues
Innovation	A3: Involve creative use of engineering principles and research- based knowledge in novel ways
Consequences for society and the environment	A4: Have significant consequences in a range of contexts, characterized by difficulty of prediction and mitigation
Familiarity	A5: Can extend beyond previous experiences by applying principles-based approaches

Table 4.3: Range of Complex Engineering Activities

(Source: BAETE Accreditation Manual For Undergraduate Programs, [Version 2, 2019])